Sample Results Summary Sheet Please return this form to the Curator for each allocated Sample

Sample ID: RA-QD02-0053 PI: Keisuke Nagao

Type and date of analysis performed: Noble gas isotopic compositions 30/01/2011 - 02/02/2011 Elements or phases identified: Solar wind He, Ne, and Ar were identified.

Contaminant phases identified: Most of ⁴⁰Ar and slightly higher abundances of Xe compared with blank levels would be terrestrial contamination. Kr was comparable with blank level. The blank levels were $(3.1-4.0)\times10^{-12}$ for ⁴He, $(5.4-6.5)\times10^{-13}$ for ²⁰Ne, $(4.2-4.7)\times10^{-14}$ for ³⁶Ar, $(1.2-1.4)\times10^{-11}$ for ⁴⁰Ar, $(1.1-1.5)\times10^{-15}$ for ⁸⁴Kr, and $(0.4-1.6)\times10^{-16}$ for ¹³²Xe in the unit of cm³STP..

Sample handling: in ultra-high vacuum

State of sample pre-analysis: Hold in N₂-gas before in ultra-high vacuum. During the operation to connect the sample chamber with the purification line, the samples were accidentally exposed to the ambient atmosphere for about 2 hours. The chamber was evacuated to ultra-high vacuum condition, $\leq 10^{-7}$ Pa, and then mildly warmed at 60°C overnight, followed by keeping at room temperature for a week.

State of sample post-analysis: Consumed by laser ablation.

Analysis data Notes: Summarized in separate Excel file.

Isotopic ratios and concentrations of He, Ne, and Ar in Hayabusa RA-QD02-0053.

Extraction step	⁴ He	³ He/ ⁴ He	²² Ne	²⁰ Ne/ ²² Ne	²¹ Ne/ ²² Ne	³⁶ Ar	³⁸ Ar/ ³⁶ Ar	⁴⁰ Ar/ ³⁶ Ar		4He/20Ne		³⁶ Ar/ ²⁰ Ne
	(10 ⁻⁶ cm ³ STP/g)	110/ 110	(10 ⁻⁶ cm ³ STP/g))	110, 110	(10 ⁻⁶ cm ³ STP/g)				110/ 110		
200°C	5579	0.000499	1.09	13.0	0.040	0.29	0.172	170		392.1		0.0204
	± 563	± 0.000036	± 0.23	± 2.2	± 0.024	± 0.12	± 0.056	± 101	±	113.6	±	0.0100
300°C	11942	0.000336	2.37	13.75	0.0299	0.33	0.196			367.0		0.0100
	± 1201	± 0.000025	± 0.36	± 0.65	± 0.0095	± 0.12	± 0.049		±	68.8	±	0.0041
CE	12.8		4.36	12.74	0.0329	1.61	0.179			0.2		0.0290
	± 8.0		± 0.52	± 0.50	± 0.0057	± 0.25	± 0.018		±	0.1	±	0.0058
Total	17534	0.000387	7.82	13.1	0.0330	2.22	0.180	22		171.3		0.0217
	± 1326	± 0.000036	± 0.67	± 1.2	± 0.0061	± 0.30	± 0.029	± 13	±	25.3	±	0.0040

Helium

Neon

I

I

Argon

重

³He/⁴He (10⁻⁴)

4

3

0 16

14

12 Ne/22Ne

300

⁴⁰Ar/³⁶Ar 100

0

RA-QD02-0053 (0.061 µg: estimated from shape and density)

CE denotes Complete noble gas Extraction.

10⁻⁷