PLANS OF HAYABUSA2'S ONC IMAGE ARCHIVING AND PUBLIC RELEASE . R. Honda¹, Y. Yokota^{1,2}, M. Yamada³, Y. Yamamoto², S. Murakami², K. Crombie⁴, E. Tatsumi^{5,6,7}, T. Kouyama⁸, T. Morota^{7,9}, M. Matsuoka², S. Sugita⁷ S. Kameda¹⁰, H. Suzuki¹¹, N. Sakatani², Y. Cho⁵, M. Hayakawa², C. Honda¹³, K. Yoshioka⁵, H. Sawada², N. Hirata¹², N. Hirata¹³, A. Miura², H. Ohtake², H. Sato², H. Kikuchi²

¹Kochi Univ., Japan (Akebono-cyo, 2-5-1, Kochi, Japan, honda@is.kochi-u.ac.jp), ²ISAS/JAXA, Japan, ³Chiba Inst. Tech, Japan, ⁴Indigo Information Services, ⁵Instituto de Astrofísica de Canarias, Spain, ⁶Univ. of La Laguna, Spain, ⁷Univ. of Tokyo, Japan, ⁸AIST, Japan, ⁹Nagoya Univ., Japan. ¹⁰Rikkyo Univ., Japan. ¹¹Meiji Univ., Japan, ¹²Univ. of Aizu, Japan, ¹³Kobe University, Japan.

Introduction: JAXA's asteroid explorer Hayabusa2 has been continuing the observation of asteroid Ryugu since its arrival to Ryugu on 28th June, 2018. Optical navigation camera suite (ONC)^[1] onboard Hayabusa2 is composed of two wide-angle camera ONC-W1, ONC-W2 and the telescopic multiband camera ONC-T capable of taking 7 narrow-band images ranging from 0.40 to $0.95 \mu m$ (ul, b, v, na, w, x, p) using a filter wheel. Hayabusa2 succeeded in two touchdown to Ryugu for sampling in February and July, 2019 and also succeeded in artificial cratering experiments using a Small Carryon Impactor (SCI). Variety of images including global mapping, high resolution images of limited areas during descending operation, sequential images during touchdown and change due to SCI cratering have been obtained during 14 month observation. We are now preparing the dataset for release to public. In this presentation, we introduce a overview of the ONC image dataset, plan of image archiving for multi-purpose analysis including geomorphology, photometry and spectroscopy such as [1][2]. The schedule of public release is also introduced.

The overview of ONC image dataset: Table 1 summarizes the contents of the major ONC image data subset in chronological order. Total of about 8700 images are acquired at the end of August, 2019. As shown in Fig. 1, during 14 month observation after the arrival to Ryugu, solar phase angle has changed from 19 deg. to 0 deg. at solar conjunction in December, 2018. After that the solar phase angle has increased up to 39 deg. As a result, several set of global mapping at home position (altitude 20 km) are acquired at different phase angles. These data can be utilized to photometric studies or geomorphological study at the different illumination condition.

As global mapping, ONC-T's v band images are taken at the 3 deg. rotational angle for shape model construction. Total of five data set (20180630, 20180710, 20190115, 20190121, 20190725) are acquired in this mode. On the other hand, ONC-T's multi band images are taken at every 30 deg. rotational angle interval are obtained as four dataset at Box-A (Home position, 20180703, 20180710, 20190131, 20190521) and six data set of BOX-B (tour observation in longitudinal direction, 20180831, 20190108, 20190124, 20190814, 20190819, 20190824).

Table	1 1	Rer	resent	tative	ONC	image	subset
ruore	1.1	ιτομ	resem		0110	mage	Subset

Date	Contents	Alti- tude (km)
20190710, 0712	Box-A global mapping	20
20180719-0729	Box-C1 : tour to low altitude, E- W stereo (global)	5-7
20180801	Mid. altitude global observa- tion	5
20180825-0907	Box-B1 : tour to polar region (global)	20
20180911	Touchdown 1 rehearsal 1	3
20190920-0921	Minerva II 1	-
20191002-1003	Mascot Separation	De- scent
20191002	Global mapping during Mascot operation	3
20191014-1015	Touchdown 1 rehearsal 1A	De- scent
20191024-1025	Touchdown 1 rehearsal 3	>0.02
20181030-1101	Box-C2 : tour to low altitude (global)	5
20190108, 0124	Box-B2, B3 : tour to opposition area (global)	20
20190131	Box-A: global mapping	20
20190221-0222	Touchdown 1	>0
20190227-0301	Box-C3: tour to low altitude (global)	5
20190308, 0309	Descent to SCI target area	De- scent
20190321, 424	CRA1 : scan observation of SCI target area	1.7
20190404-0405	SCI separation	-
20190424	CRA2 : scan observation of SCI target area	1.7
20190515-0516	PPTD(pin-point touchdown)- TM1: rehearsal (abort)	> 0.05
20190521	Box-A global mapping	20
20190529-0530	PPTD-TM1A: rehearsal	>0.02
20190612-0613	PPTD-TM1B: rehearsal	>0.02
20190710-20711	PPTD	>0
20190724-0727	Box-C4: tour to low altitude and poles (global)	5
20190814, 0819, 0824	Box-B5, B6: tour to phase angle 13, 30, 46 deg (global)	20

Fig. 1 Solar phase angle during Hayabusa2 proximity phase.

The product and schedule of public release: Table 2 shows the definition of product that we are planning to create as a data archive. The data is going to be prepared in PDS4 format. To improve the availability of the image data set, we are also preparing the pixel to pixel backplane data of the images including such as longitude, latitude, geometrical viewing conditions such as ones created for first Hayabusa's camera (AMICA) [5]. Together with this backplane data, multi-dimensional dataset including backplane and spectrum information and time will be composed. By extracting relevant cross section from this data set, studies utilizing machine learning techniques such as clustering[4][5] or flexible analysis on photometry[6] will become easier. In addition, correlation analysis of the multiple attributes will be enabled by a such database.

Table 2 Troduct level definition		
Level	Specification	
L2a	Raw / Onboard Calibrated Image	
L2b	Calibrated Image	
L2c	Distortion Corrected Irradiance Data	
L2d(L2dr)	I/F Image (and its co-registered image	
	among the bands)	
L2e(L2er)	Reflectance Image (and its co-registered	
	image among the bands)	
L3{d, e}	Projected on the latitude-longitude map	
L2dbp	Backplane(lat., lon., i, e, g, range)	

Table 2 Product level definition

Table 3 shows the current public release schedule. The data is planned to be released to public stepwisely. Since we are still under the review process of PDS4, we are planning to release data in provisional format firstly from September-October, 2019, and update them afterwards. A complete data set of proximity phase in authentic PDS4 format will be released in Dec. 2020.

Table 3 Schedule of public rele	ease
---------------------------------	------

Date	Content
Sept. – Oct.	L2a-d, First Box-A global map-
2019	ping(20180710, 20180712)
Dec., 2019	L2a-d of mid. altitude global mapping
	(20180801)
June., 2020	L2a-d of acquired by first touchdown
	rehearsal (20180911)
Dec., 2020	L2a-d and the backplane data acquired
	in the proximity phase.

Acknowledgments: We thank the entire Hayabusa2 team to achieve the observation and analysis. This study was supported by Japan Society for the Promotion of Science (JSPS) Core-to-Core Program "International Network of Planetary Sciences.

References: [1] Sugita, S. et al., 2019. *Science* 10.1126/science.aaw0422, [2] Watanabe, S. et al. 2019. *Science* 364, 268-272. [3] Barnouin, O. and Kahn, E., Hayabusa AMICA Images with Geometry Backplanes V1.0. HAY-A-AMICA-3-AMICAGEOM-V1.0. NASA Planetary Data System, 2012, [4] Honda et al., 2019. LPSC #2901, [5] Barucci M. A. et al., 2019. Astronomy and Astrophysics, 629, A13. [6] Yokota et al., 2019. This meeting.