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Abstract	

The	Optical	Navigation	Camera	(ONC-T,	ONC-W1,	ONC-W2)	onboard	Hayabusa2	are	also	being	used	for	scientific	

observations	of	the	mission	target,	C-complex	asteroid	162173	Ryugu.	Science	observations	and	analyses	require	

rigorous	 instrument	 calibration.	 In	 order	 to	 meet	 this	 requirement,	 we	 have	 conducted	 extensive	 inflight	

observations	during	the	3.5	years	of	cruise	after	the	launch	of	Hayabusa2	on	3	December	2014.	In	addition	to	the	

first	inflight	calibrations	by	Suzuki	et	al.	(2018),	we	conducted	an	additional	series	of	calibrations,	including	read-

out	smear,	electronic-interference	noise,	bias,	dark	current,	hot	pixels,	sensitivity,	linearity,	flat-field,	and	stray	light	

measurements	for	the	ONC.	Moreover,	the	calibrations,	especially	flat-fields	and	sensitivities,	of	ONC-W1	and	-W2	

are	updated	for	the	analysis	of	the	low-altitude	(i.e.,	high-resolution)	observations,	such	as	the	gravity	measurement,	

touchdowns,	and	the	descents	for	MASCOT	and	MINERVA-II	payload	releases.	The	radiometric	calibration	for	ONC-

T	is	also	updated	in	this	study	based	on	star	and	Moon	observations.	Our	updated	inflight	sensitivity	measurements	

suggest	the	accuracy	of	the	absolute	radiometric	calibration	contains	less	than	1.8%	error	for	the	ul-,	b-,	v-,	Na-,	w-,	

and	x-bands	based	on	star	calibration	observations	and	~5%	for	the	p-band	based	on	lunar	calibration	observations.	

The	radiance	spectra	of	the	Moon,	Jupiter,	and	Saturn	from	the	ONC-T	show	good	agreement	with	the	spacecraft-

based	observations	of	the	Moon	from	SP/SELENE	and	WAC/LROC	and	with	ground-based	telescopic	observations	

for	Jupiter	and	Saturn.	Our	calibration	results	suggest	that	the	0.7-µm	absorption	band	typically	observed	on	Ch	and	

Cgh	 asteroids	 at	 the	 ~3-4%	 level	 can	 be	 detected	 with	 the	 ONC’s	 signal-to-noise	 ratio	 (SNR)	 of	 ~2.	 We	 also	

demonstrate	a	decrease	in	SNR	due	to	CCD	temperature	increases	caused	by	radiant	heat	when	the	spacecraft	is	

close	to	the	surface,	as	the	SNR	is	measured	to	be	150	at	a	CCD	temperature	of	20	˚C	(the	worst	case	scenario).	Since	

Ryugu	may	possess	a	significant	amount	of	internal	volatiles,	a	sodium	atmosphere	around	Ryugu	is	considered	to	

be	highly	plausible.	We	evaluated	the	upper	limit	of	detectability	of	a	sodium	atmosphere	around	Jupiter	using	the	

Na-filter	as	100	R	with	100	images.	This	implies	that	the	ONC-T	can	detect	a	sodium	atmosphere	of	several	10s	kR	

based	on	a	single	image	set	of	v-	and	Na-bands	and	of	several	100s	R	based	on	100	image	sets.	Finally,	we	report	the	

first	 inflight	 observation	 of	 Ryugu	 by	 ONC-T	 from	 1.3×106	 km	 away	 on	 26	 February	 2018.	 The	 ONC-T	 v-band	

observation	displays	consistency	with	ground-based	observation,	which	confirms	the	capability	of	ONC-T.	
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1.	Introduction	

The	Hayabusa2	spacecraft	was	launched	by	the	Japan	Aerospace	eXploration	Agency	(JAXA)	in	December	

2014	and	arrived	at	its	target,	the	C-complex	asteroid	162173	Ryugu	(formerly	1999JU3)	in	27	June	2018.	Its	

mission	 is	 to	 rendezvous	with	Ryugu	and	 to	 return	 samples	 from	 the	asteroid’s	surface.	 In	addition	to	 the	

sampling	system,	Hayabusa2	also	carries	remote-sensing	instruments,	such	as	the	Optical	Navigation	Camera	

(ONC),	 the	 3µm	 Near-Infrared	 Spectrometer	 (NIRS3),	 the	 Thermal	 Infrared	 Imager	 (TIR),	 and	 the	 Light	

Detection	 and	Ranging	 laser	 (LIDAR).	 Before	 sampling,	 the	asteroid	 surface	will	 be	mapped	precisely	and	

accurately	 with	 the	 remote-sensing	 instrument	 payload,	 for	 example	 0.5-2	 m/pix	 for	 the	 whole	 asteroid	

surface	by	ONC-T,	and	characterized	from	both	a	mineralogical	and	morphological	point	of	view.	This	paper	

describes	the	inflight	calibrations	of	the	charge-couple	device	(CCD)	for	the	telescopic	camera	(ONC-T)	and	the	

two	wide-angle	cameras	(ONC-W1	and	ONC-W2)	onboard	the	Hayabusa2	spacecraft.	ONC’s	designs	are	shown	

in	Table	 1.1.	 Their	 exposure	 time	 settings	 of	 three	 cameras	 are	 different	 because	ONC-T	 engages	 optical	

navigations	by	observing	 stars	and	Ryugu	with	 long	exposure	 time,	ONC-W1	and	-W2	are	mainly	used	 for	

observing	during	close	encounter	to	the	Ryugu	surface	with	short	exposure	time.	Especially,	ONC-W1	which	

needs	 to	 capture	 target	 markers	 with	 flash	 light,	 are	 set	 to	 have	 shortest	 exposure	 times.	 More	 detailed	

specifications	such	as	a	performance	of	CCD	and	hardware	weight	and	size	are	shown	in	Appendix	A.	

A	number	of	missions	are	planned	to	visit	spectrally	different	types	of	asteroids,	such	as	Hayabusa2	to	a	

C-type	asteroid,	OSIRIS-REx	to	a	B-type	asteroid	(Lauretta	et	al.,	2011),	Psyche	to	a	M-type	asteroid	(Elkins-

Tanton,	 2018),	 and	Lucy	 to	a	 set	 of	 Jupiter	 Trojan	asteroids	 (Levison	et	 al.,	 2017).	 The	 comparison	 of	 the	

absolute	 reflectance	 from	 the	 remote	 sensing	 observations	 across	 these	 missions	 is	 important	 for	

understanding	 the	 difference	 between	 the	 various	 target	 asteroids,	 including	 differences	 in	 composition,	

aqueous	 alteration,	 the	 degree	 of	 space	 weathering,	 and	 thermal	 metamorphism.	 Furthermore,	 the	

compositional	 constraints	 and	 connections	 to	 meteorite	 analogs	 are	 important	 for	 understanding	 the	

properties	of	primitive	materials	in	the	early	Solar	System.	Absolute	reflectance	spectra,	sometimes	referred	

to	as	spectral	albedo,	is	one	of	the	most	powerful	indices	for	the	mineralogical	classification	(e.g.,	Johnson	and	

Fanale,	1973;	Gaffy,	1976)	of	solar	system	objects.	Also,	reflectance	variations	across	an	object’s	surface	can	

be	used	to	determine	levels	of	aqueous	alteration	(Fornasier	et	al.,	2014),	thermal	metamorphism	(Hiroi	et	al.,	

1996),	grain-size	variation	(Cloutis	et	al.,	2013),	and	space	weathering	(e.g.,	Matsuoka	et	al.,	2015;	Lantz	et	al.,	

2017).	

Another	 important	 feature	 of	 the	Hayabusa2	mission	 is	 the	Mobile	 Asteroid	 Surface	 Scout	 (MASCOT)	

lander,	which	has	an	 instrument	payload	with	overlapping	wavelength	coverage	with	the	main	spacecraft’s	

payload,	 both	 of	 which	 will	 be	 observing	 the	 asteroid’s	 surface	 (e.g.,	 Ho	 et	 al.,	 2017)	 at	 different	 spatial	

resolutions.	 The	 counterpart	 of	 the	ONC	 is	 the	MASCOT	Camera	 (MasCam),	which	 has	a	 1024x1024	 pixel	

complementary	metal	oxide	semiconductor	(CMOS)	image	sensor	sensitive	in	the	400-1000	nm	wavelength	
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range	with	four	color	LEDs.	In	order	to	compare	and	connect	the	spectra	from	MasCam	and	ONC-T,	a	robust	

spectral	radiometric	calibration	is	necessary.	

The	main	objective	of	this	study	is	to	describe	the	inflight	calibration	of	three	cameras,	ONC-T,	ONC-W1,	

and	 ONC-W2,	 during	 the	 3.5	 year	 cruise	 phase	 from	 December	 2014	 to	 May	 2017,	 and	 to	 describe	 the	

calibration	pipeline	which	will	 be	generating	products	 for	 JAXA’s	Data	Archives	 and	Transmission	 System	

(DARTS;	 https://www.darts.isas.jaxa.jp/planet/project/hayabusa2/)	 and	 NASA’s	 Planetary	 Data	 System	

(PDS).	The	results	of	preflight	calibrations	of	ONC-T	and	the	results	of	 inflight	geometric	calibrations	were	

described	 in	detail	by	Kameda	et	 al.	 (2017)	and	Suzuki	 et	 al.	 (2018),	 respectively.	However,	differences	 in	

temperature	 and	 environment	 between	 the	 laboratory	 and	 inflight	 calibration	 measurements	 requires	 a	

validation	 and	 update	 to	 the	preflight	 radiometric	 calibration.	 Thus,	we	 conduct	 re-calibration	 of	 the	CCD	

sensitivity	 based	 on	 inflight	 star	 observations	 obtained	 at	 the	 reference	 temperature	 (~-30℃ ).	 We	 also	

measured	 the	 sensitivity	 temperature	 dependence	 based	 on	 inflight	 Jupiter	 observations	 under	 varying	

hardware	 temperatures.	Furthermore,	we	 summarize	 the	 sensitivities	 of	ONC-W1	and	 -W2	 based	 on	 both	

preflight	and	inflight	measurements.	The	goal	of	this	paper	is	to	provide	reliable	sensitivity	measurements	for	

the	ONC	system	and	evaluate	its	use	in	mineralogical	mapping.	

First	we	will	describe	 the	 calibration	 flow	of	ONC	 images	 in	Sec.	2,	 and	each	detailed	analysis	 in	 the	

calibration	processes	is	shown	in	Sec.	3	for	ONC-T	and	Sec.	5	for	ONC-W1	and	-W2.	Detectability	of	sodium	

atmosphere	will	be	discussed	in	Sec.	4.	ONC	system	alignment	with	the	spacecraft	and	NIRS3	will	be	analyzed	

in	Sec.	6	and	7,	respectively.	Finally,	applications	in	scientific	analyses	will	be	discussed	in	Sec.	8,	including	the	

report	of	the	first	inflight	observation	of	Ryugu	in	Sec.	8.4.	

Table	1.1.	Designs	of	ONC.	

	 ONC-T	 ONC-W1	 ONC-W2	

Effective	lens	aperture	 15.1	mm	 1.08	mm	 1.08	mm	

Focal	length	 120.50±0.01	mm	for	

wide-filter*	(Suzuki	et	

al.,	2018)	

10.22	mm	 10.38	mm	

Field	of	view	 6.27˚	(Nadir	view)	 69.71˚	(Nadir	view)	 68.89˚	(Slanted	~30˚	

from	nadir)	

F	number	(F#)	 9.05	 9.6	 9.6	

Color	filters	 7	color	bandpass	filters	

(ul:	0.40	µm,	b:	0.48	µm,	

v:	0.55	µm,	Na:	0.59	µm,	

w:	0.70	µm,	x:	0.86	µm,	

Clear	filter	 Clear	filter	
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p:	0.95	µm)	and	1	clear	 	

filter	(wide).	

Exposure	time	 5.44	ms,	8.20	ms,	10.9	

ms,	16.4	ms,	21.8	ms,	

32.8	ms,	43.5	ms,	65.6	

ms,	87.0	ms,	131	ms,	

174	ms,	262ms,	348	ms,	

525	ms,	696	ms,	1.05	s,	

1.39	s,	2.10	s,	2.79	s,	

4.20	s,	5.57	s,	8.40	s,	

11.1	s,	16.8	s,	22.3	s,	

33.6	s,	44.6	s,	67.2	s,	

89.1	s,	134	s,	178	s,	0	s	

(for	smear)	

170	µs,	256	µs,	340	µs,	

513	µm,	680	µs,	1.03	ms,	

1.36	ms,	2.05	ms,	2.72	

ms,	4.1	ms,	5.44	ms,	8.20	

ms,	10.9	ms,	16.4	ms,	

21.8	ms,	32.8	ms,	43.5	

ms,	65.6	ms,	87.0	ms,	

131	ms,	174	ms,	262	ms,	

348	ms,	525	ms,	696	ms,	

1.05	s,	1.39	s,	2.10	s,	

2.79	s,	4.20	s,	5.57	s,	0	s	

(for	smear)	

1.36	ms,	2.05	ms,	2.72	

ms,	4.1	ms,	5.44	ms,	8.20	

ms,	10.9	ms,	16.4	ms,	

21.8	ms,	32.8	ms,	43.5	

ms,	65.6	ms,	87.0	ms,	

131	ms,	174	ms,	262	ms,	

348	ms,	525	ms,	696	ms,	

1.05	s,	1.39	s,	2.10	s,	

2.79	s,	4.20	s,	5.57	s,	

8.40	s,	11.1	s,	16.8	s,	

22.3	s,	33.6	s,	44.6	s,	0	s	

(for	smear)	

*Focal	lengths	for	v-	and	Na-filters	of	ONC-T	are	in	Appendix.	A.	 	
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2.	Image	Calibration	Flow	

Raw	 images	acquired	by	 the	ONC	system	need	to	be	processed	 in	a	 sequence	of	 steps	to	 scientifically	

calibrate	the	image	data.	In	this	section,	we	summarize	the	calibration	flow	of	the	ONC	images	from	raw	data	

(Level	0)	to	higher-level,	radiometrically	and	geometrically	calibrated	data	(Level	2).	Figure	2.1	displays	the	

data	calibration	flowchart	for	the	ONC	and	shows	the	product	levels	to	be	archived	in	both	DARTS	and	PDS	

(L0:	raw	data,	L1:	raw	data	with	a	header,	L2a:	spacecraft	 information	added	data,	L2b:	 flat-field	corrected	

digital	unit	data,	L2c:	radiance,	L2d:	radiance	factor	(I/F),	L2e:	reflectance	factor	at	(incidence	angle,	emission	

angle,	phase	angle)=(30˚,	0˚,	30˚)).	

The	digital	number	for	each	pixel	in	a	raw	image	is	given	as	a	8-,	10-,	or	12-bit	binary	number.	For	higher-

level	products,	we	use	the	FITS	(Flexible	Image	Transport	System)	formatted	files.	A	FITS	formatted	file	for	the	

ONC	system	includes	a	primary	header	data	unit	and	an	image	extension.	Headers	include	hardware	status,	

navigation,	and	other	ancillary	information,	such	as	spacecraft	position	and	attitude	calculated	from	the	SPICE	

kernels.	 As	 described	 in	Fig.	 2.1,	 the	 calibration	 flow	 requires	 input	parameters	 for	 each	 step,	 and	 those	

parameters	are	 included	 in	the	headers.	The	bias	and	smear	subtraction	 is	conducted	 inflight	during	home	

position	 (at	 alt.	 ~20	 km)	 observations.	 However,	 for	 images	 acquired	 during	 the	 cruise	 phase	 and	 the	

proximity	operations	during	the	rendezvous	phase,	the	bias	and	smear	has	to	be	corrected	onground	through	

the	pipeline	process.	One	more	thing	to	note	is	that	some	steps	for	ONC-T	have	not	yet	been	implemented	in	

the	calibration	pipeline	(gray	boxes	in	Fig.	2.1).	Dark	current	and	stray	light	will	be	negligible	in	most	asteroid	

observations,	except	for	some	proximity	observations,	such	as	observations	during	the	very	close	approach	to	

the	surface	or	scan	observations.	When	delicate	analyses,	such	as	photometric	or	spectral	analyses	close	to	the	

asteroid	 limb	are	 conducted,	 point-spread-function	 (PSF)	 corrections	need	 to	 be	 incorporated.	 	 However,	

because	the	same	PSF	correction	method	may	not	always	be	applicable,	depending	on	where	in	the	FOV	the	

target	falls	or	if	it	fills	or	only	partially	fills	the	FOV,	we	do	not	apply	this	step	for	first	public	product	release.	

Nevertheless,	the	 inner	part	of	 the	target’s	disk	will	be	 little	affected	by	the	PSF;	 the	value	without	the	PSF	

correction	is	sufficiently	accurate.	The	effect	of	the	PSF	will	be	discussed	more	in	Sec.	3.7.1.	This	process	could	

be	implemented	in	a	future	update	to	the	pipeline	process.	

Each	 calibration	 step	 is	 described	 in	 detail	 in	 the	 following	 sections.	 Calibration	 campaigns	 were	

conducted	prefight	and	inflight	during	the	cruise	phase.	The	ONC-T	includes	7	color	bandpass	filters	and	one	

“wide”	clear	filter,	whereas	the	ONC-W1	and	ONC-W2	include	a	single	“wide”	clear	filter.	We	carefully	test	and	

validate	the	spectral	reconstruction	of	the	ONC-T	using	multiple	spectrally	well-known	stars	and	planets,	since	

the	absolute	sensitivity	is	critical	for	the	spectral	characterization	of	the	Ryugu’s	surface.	

File	Naming	Rules	

ONC	imaging	data,	Level	2a	–	2d	are	produced	in	FITS	file	format.	The	file	naming	conventions	for	ONC	images	

are	 	
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“hyb2_onc_(Date)_(Time)_t(Filter)(i)_(Level).fit”	for	ONC-T,	 	

and	 	

“hyb2_onc_(Date)_(Time)_(Cam)(i)_(Level).fit”	for	ONC-W1	and	-W2,	

	 where	(Date)	indicates	the	observation	date	in	8	digit	number,	YYYYMMDD,	(Time)	indicates	the	observation	

time	in	6	digit	number,	hhmmss,	(Filter)	is	the	band	name	of	filter	(u:	ul-filter,	b:	b-filter,	v:	v-filter,	n:	Na-filter,	

w:	w-filter,	x:	x-filter,	p:	p-filter,	and	i:	wide-filter),	(i)	is	“f”	for	1024x1024	pixels	fear	data	and	“b”	for	32x1024	

pixels	 dark-reference	 data	 (Optical	 Black)	 (see	 Fig.	 5	 in	 Kameda	 et	 al.	 (2017)),	 (Cam)	 is	 “w1”	 or	 “w2”	

corresponding	to	the	instruments	ONC-W1	and	W2	respectively,	and	(Level)	indicates	the	product	levels.	Note	

that	the	higher-level	products	may	be	provided	different	naming	rules	and	formats.	

	

Figure	2.1.	ONC	data	 calibration	 flowchart,	 starting	 from	raw	 images	 to	higher-level	products.	Calibration	

processes	 input	 parameters	 are	 acquired	 from	 the	 FITS	 file	 headers.	 Note	 that	 gray	 boxes	 have	 not	 been	

implemented	 in	the	current	version	of	 the	pipeline,	but	are	expected	 in	a	 future	update.	Products	 levels	 in	




6�1055���52����364�
�


�

brackets	are	intermediate	products	and	not	going	to	be	archived.	Some	L2a	products	have	been	smear	and	bias	

corrected	onboard.	(n:	filter,	t:	exposure	time,	TAE:	electronics	package	of	ONC	system	(AE)	temperature,	TCCD:	

CCD	temperature	of	ONC-T,	TELE:	the	electric	circuit	temperature	of	ONC-T,	(XPNL,	YPNL):	spacecraft	attitude,	Ssun:	

solar	irradiance)	
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3.	Radiometric	calibration	of	ONC-T	

For	radiometric	calibration,	image	digital	number	(DN)	is	converted	to	physical	units	of	radiance	(Wm-

2µm-1sr-1).	The	radiometric	calibration	equation	has	the	form:	

" =
$%&(()*+,(-.*/01223,5,1678,5,196	;,(/<=*)(()*+),(?*)@0A,1223,5;),(/B

C5,D∗FD(1223,5)∗A
	 [Wm-2µm-1sr-1],	

(n=ul,	b,	v,	Na,	w,	x,	p)	

(3.1)	

where	F	[Wm-2µm-1sr-1]	is	the	radiance	from	the	surface,	 GHIJ	 [DN]	is	a	raw	image,	 	GKLMN0OPPQ,1, OR$R,1;	 [DN]	

is	the	bias	level,	 GSIHT0U, OPPQ,1;	 [DN]	is	the	dark	current,	 GVWXIH(GHIJ)	 [DN]	is	the	smear	image,	 GVY	 [DN]	is	

the	stray	light	level.	L-1(I)	is	the	linearity	correction	function,	Z1,[ 	 is	the	flat-field	image	of	ONC-T,	 \[0OPPQ,1;	

[(DN/s)/(Wm-2µm-1sr-1)]	is	the	sensitivity,	t	[s]	is	exposure	time,	 OPPQ,1 	 	[℃]	 is	the	CCD	temperature	of	ONC-

T,	 OR$R,1 	 	[℃]	 is	the	electric	circuit	(ELE)	temperature	of	the	ONC-T,	O_R,1 	 	[℃]	 is	the	AE	temperature	of	the	

ONC	 system,	 and	 n	 indicates	 filter	 name.	 Each	 term	 is	 described	 in	 detailed	 in	 following	 subsections.	

Calibrations	conducted	so	 far	 for	both	 inflight	and	preflight	are	summarized	 in	Table	3.1.	Note	that	all	 the	

calibration	images	during	the	cruise	phase	were	obtained	in	12-bit	format,	but	the	rendezvous	phase	data	will	

be	12-bit,	10-bit,	or	8-bit	formats	for	different	purposes,	such	as	10-bit	images	for	spectroscopic	observations	

and	8-bit	images	for	geometric	observations.	The	bit	depth	information	is	included	in	the	header	of	each	image.	

In	Kameda	et	al.	(2017)	the	effective	wavelengths	were	calculated	using	only	the	transmission	of	band-

pass	filters.	To	obtain	a	more	precise	measurement,	we	recalculate	the	effective	wavelengths	using	the	system	

efficiency	Φ[(a)	 (Fig.	3.1),	including	the	transmittance	of	the	band-pass	filters,	the	neutral	density	(ND)	filter,	

lenses,	CCD	cover	glasses,	the	quantum	efficiency	of	the	CCD,	and	the	spectrum	of	the	light	source.	The	effective	

wavelength	 for	 each	 filter,	 using	 the	 solar	 spectrum	 (ASTM	 E-490)	 and	 the	 white	 light	 as	 a	 light	 source,	

respectively,	are	tabulated	in	Table	3.2.	Table	3.2	also	shows	the	bandwidth,	the	effective	bandwidth,	and	the	

effective	solar	irradiance	through	each	filter.	The	bandwidth	is	defined	in	the	same	way	as	Kameda	et	al.	(2017),	

but	here	we	used	the	system	efficiencies	instead	of	the	transmissions	themselves.	The	effective	wavelength	is	

thus	defined	as	

aXbb,[ =
∫de(d)fD(d)gd

∫e(d)fD(d)gd
	 ,	 (3.2)	

where	 the	 system	 efficiency	 Φ[(a) = h[(a)hij(a)hk(a)hPl(a)m0a, OPPQ,1; ;	 h[(a) ,	 hnQ(a) ,	 h$(a) ,	 and	

hPl(a)	 are	 the	 transmissions	of	 the	band-pass	 filters,	 the	ND	 filter,	 the	 lenses,	and	 the	CCD	cover	glasses,	

respectively,	 m0a, OPPQ,1; 	 is	 the	 quantum	 efficiency,	 and	 o(a)	 is	 the	 light	 source	 spectrum.	 The	 effective	

bandwidth	 ΔaXbb	 is	defined	as	 	

ΔaXbb,[ ∙ Φ[0aXbb,[; = ∫Φ[(a)ra	 .	 (3.3)	

Hereafter	we	use	the	effective	wavelength	with	respect	to	the	solar	spectrum.	Note	that	the	quantum	efficiency	

used	here	is	extrapolated	to	-30	℃	 of	CCD	temperature	using	the	temperature	dependence	function	provided	
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Sensitivity	 Time-

dependence	

N/A	 Health	check	(FF	lamp)	 11	 December	 2014,	 16	 April	 2015,	 10	

September	2015,	8	July	2017,	16	October	

2017,	5	December	2017	

Linearity	 Integrating	sphere	 FF	 lamp	with	 variation	 of	

exposure	time	

2	December	2017	

Flat-Field	 	 Integrating	 spheres	

(Kameda	 et	 al.,	 2017;	

Suzuki	et	al.,	2018)	

Star	 observation	 with	

variation	 of	 spacecraft	

attitude	

12	to	14	October	2017	

Geometric	

distortion	 	

N/A	 Stars	(Suzuki	et	al.,	2018)	 11	December	2017� 	

Alignment	 to	 the	

S/C	

N/A	 Stars	 11	December	2017	

Sharp	PSFs	 Pinhole	 (Kameda	 et	 al.,	

2017)	

Stars	(Suzuki	et	al.,	2018)	 	 11	December	2017	

Broad	PSFs	 Small	extended	sources	 Earth	and	Mars	 4	December	2015,	25	May	2016	

Stray	lights	 N/A	 Radiator	 stray	 lights	 with	

variation	of	 the	spacecraft	

attitude.	Ghost	with	Moon	

and	Earth.	

11	December	2014,	23	June	2015,	12	 to	

17	October	 2015,	 9	November	 2015,	 14	

November	 2015,	 22	 December	 2015,	 9	

February	 to	 17	 March	 2016,	 21	 March	

2016,	28	June	 to	23	July	2016,	13	 to	20	

June	2017,	17	to	21	October	2017	

	

Table	3.2.	Characteristics	of	the	ONC-T	photometric	system.	

	 ul	 b	 v	 Na	 w	 x	 p	

asbb
t)	 (nm)	 397.5	 479.8	 548.9	 589.9	 700.1	 857.3	 945.1	

aXbb
u)	 (nm)	 395.2	 480.0	 549.0	 590.0	 700.3	 857.7	 945.7	

aXbb	 (nm)	

Kameda	et	al.	(2017)	
390.4	 479.8	 549.0	 590.2	 700.4	 858.9	 949.7	

Effective	bandwidth	

ΔaXbb	 (nm)	
36.0	 26.6	 30.6	 11.8	 29.2	 41.7	 56.0	

Bandwidth	(nm)	 34.7	 26.6	 27.9	 11.6	 28.8	 42.4	 57.2	

Bandwidth	(nm)	

Kameda	et	al.	(2017)	
45	 25	 28	 10	 28	 42	 57	
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Effective	 solar	

irradiance	(W/m2/um)	
1343.7	 1969.1	 1859.7	 1788.0	 1414.4	 985.8	 834.9	

1)	with	respect	to	solar	spectrum.	2)	with	respect	to	white	light.	

	

3.1.	Read-out	smear	removal	

ONC	is	not	equipped	with	a	mechanical	shutter,	 instead,	each	exposure	 is	divided	with	an	electronical	

mechanism.	Because	of	 the	mechanical	shutter-less	design	of	 the	ONC,	 the	CCD	 is	 irradiated	during	 frame	

transfer	along	 the	 vertical	 direction.	 So	 that,	 even	 0-sec	 exposure	 images	 actually	 include	 read-out	 smear	

during	this	very	short	exposure	time	(<10	ms).	For	the	global	observations	at	the	home	position	the	ONC-T	

will	take	0-sec	exposures	and	proper	exposures	alternately,	and	the	read-out	smear	will	be	removed	onboard	

by	subtracting	the	0-sec	exposures	from	the	proper	exposures.	However,	during	the	touchdown	sequences	the	

spatial	coverage	of	the	field-of-view	(FOV)	changes	rapidly	over	the	short	time	duration	of	these	operations,	

and	 appropriate	 0-sec	 exposures	with	 the	 same	 spatial	 coverage	as	 the	proper	exposure	 image	 cannot	 be	

acquired.	In	this	operational	case,	the	read-out	smear	removal	process	will	be	conducted	after	the	images	have	

been	downlinked	using	the	method	described	by	Ishiguro	et	al.	(2010):	

GNvsMw(x) =
Ay25
Ay25zA

∑ (G − GKLMN − GgMw})/�Ä
ny,t
ÅÇÉ .	 (3.4)	

The	 exposure	 duration	 during	 vertical	 charge	 transfer	 UÄP1 	 is	 7.2	µs	 × 	1024 = 7.373	ms 	 for	 ONC-W2,	

which	has	been	derived	from	the	Earth	observation	images	acquired	during	the	Earth-Moon	flyby.	Because	the	

same	manufactured	CCDs	are	equipped	on	ONC-T,	-W1	and	-W2,	this	vertical	transfer	time	similar	between	the	

three	cameras.	For	example,	Fig.	3.2	shows	an	original	image	and	the	smear-removed	images	of	an	ONC-W2	

(hyb2_onc_20151203_084458_w2f_l2a.fit)	set	of	observations.	The	residual	of	 the	smear-removed	 image	 is	

less	than	1%	of	the	intensity	of	the	Earth	(~900	DN),	for	95%	of	pixels.	For	the	case	of	Ryugu,	the	effect	of	the	

smear	will	be	less	than	in	the	Earth	observations	case	due	to	the	longer	exposures	needed	for	Ryugu	due	to	its	

corresponding	lower	brightness.	This	bias	removal	method	works	sufficiently	for	the	ONC-W2	image.	We	will	

obtain	the	vertical	transfer	times	for	ONC-T	and	W1	using	Ryugu	images	during	the	rendezvous	phase.	
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Figure	3.2.	An	 example	 of	 smear	 removal	 of	 an	ONC-W2	 image	 (hyb2_onc_20151203_084458_w2f_l2a.fit)	

using	Eq.	(3.4),	showing	the	read-out	smear	was	well	removed	<1%	intensity	of	the	object.	

	

3.2.	Bias	Current	Correction	

	 	 	 The	ONC	system	has	an	electronic	bias	current	to	offset	its	zero	level.	The	temperature	dependence	of	the	

preflight	bias	 level	was	assessed	by	Kameda	et	al.	 (2017).	Here,	we	also	verify	 the	bias	 level	using	 inflight	

observations.	We	analyzed	images	acquired	with	a	zero-length	exposure	and	targeted	to	sky	in	order	to	avoid	

strong	 smear.	 As	 Kameda	 et	 al.	 (2017)	 reported,	 bias	 level	 changes	 depending	 on	 the	 CCD	 temperature	

(OPPQ,1	[℃])	and	the	AE	temperature	(O_R,1	[℃]).	Bias	level	dependencies	on	the	CCD	and	the	ELE	temperatures	

are	also	observed	 in	the	 inflight	 image	data	(Fig.	3.3).	 It	should	be	noted	that	due	to	 inflexibility	 in	the	AE	

control,	we	instead	changed	the	temperature	of	ELE	that	resides	just	behind	the	CCD.	During	the	preflight	test,	

the	AE	and	the	ELE	temperatures	were	controlled	simultaneously	to	almost	same	temperature.	Thus,	because	

the	results	of	the	pre-flight	test	include	the	effect	of	both	the	ELE	and	AE	temperatures,	we	cannot	directly	

compare	 the	 preflight	 and	 inflight	 test	measurements.	 We	 plotted	 the	 preflight	 AE	 and	 ELE	 temperature	

dependence	test	with	the	inflight	ELE	temperature	dependence	test	results	together	in	Fig.	3.3.	The	bias	level	

is	 well	 described	 by	 fitting	 the	 inflight	 data	 with	 an	 empirical	 linear	 combination	 of	 the	 CCD	 and	 ELE	

temperatures	as	

GKLMN(OPPQ,1, OR$R,1) = 320.66 + 0.652OPPQ,1 − 0.953OR$R,1	[ì�].	 	 	 	 	 	 	 	 	 	 	 	 	 (3.5)	

Figure	3.4	displays	how	well	the	empirical	function	describes	the	bias	level	of	the	inflight	data	acquired	from	

launch	until	December	2017.	Figure	3.5	shows	the	time-dependent	change	of	the	bias	level,	which	suggests	

an	increase	in	the	bias	level	during	the	first	half-year	after	launch.	Although	the	empirical	relationship	derived	
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bias	model	well	predicts	the	inflight	data	within	1%	change	over	the	3	years	of	cruise.	

	

3.3.	Dark	Current	and	Hot	Pixels	Correction	

The	 CCD	 constantly	 responses	 to	 thermal	 electrons	 even	when	 the	 detector	 is	 not	 irradiated,	 which	

produces	a	dark	current	that	should	be	subtracted	from	observed	images	to	accurately	reproduce	reflectance	

levels.	However,	because	the	ONC	does	not	have	a	physical	shutter,	we	cannot	directly	assess	the	dark	current	

at	the	time	of	each	observation.	Sky	observations,	however,	can	provide	a	measure	of	the	signals	from	the	dark	

current,	hot	pixels,	EMI,	stars,	and	stray	light.	As	Suzuki	et	al.	(2018)	reported,	the	radiator	stray	light	has	a	

gradual	structure	over	an	image.	The	stray	light	cannot	be	completely	separated	from	the	dark	current,	which	

also	has	a	 contribution	to	the	 intensity	over	an	 image.	Thus,	we	obtained	upper	 limits	of	 the	dark	 current	

(<0.09	DN/s)	contribution	at	the	reference	temperature,	 OPPQ,1 = −30℃,	based	on	the	parts	of	images	where	

the	stray	 light	contamination	 is	minimized.	This	value	 is	comparable	to	the	preflight	ground	measurement	

(<0.05	DN/s	at	 OPPQ,1 = −30℃)	by	Kameda	et	al.	(2017).	Furthermore,	the	dark	current	level	variation	as	a	

function	of	temperature	can	be	measured	using	sky	observations,	assuming	that	the	gradual	structure	in	the	

images	are	due	to	radiator	stray	light	as	measured	at	the	reference	temperature.	To	obtain	dark	current	levels	

at	higher	CCD	temperatures	(-10	℃,	10	℃,	20	℃,	and	25	℃),	we	obtained	sky	images	with	a	short	exposure	

time	(1.05	s)	for	all	temperature	conditions	and	long	exposure	times	of	33.6	s	at	-10℃,	5.57	s	at	10	℃,	and	2.1	

s	at	20	℃	and	25	℃.	We	took	3	images	for	each	exposure	condition,	and	removed	the	effects	of	cosmic	rays	by	

taking	a	median	of	these	3	images.	After	the	cosmic	ray	correction,	all	images	were	stray	light	corrected	based	

on	 images	 taken	 at	 OPPQ,1 = −30	℃,	 where	 the	 stray	 light	 contribution	was	 extracted	 using	 a	 fifth-order	

polynomial	regression	and	neglecting	outliers	which	are	caused	by	stars	and	hot	pixels.	We	obtained	the	dark	

current	distribution	except	for	star-containing	regions	within	the	image	frame.	Figure	3.6	(a)	is	a	histogram	

of	dark	current	levels	for	different	CCD	temperatures	in	the	ONC-T.	The	averages	and	the	standard	deviations	

for	the	distributions	are	also	shown	in	the	Fig.	3.6	(b).	The	dark	current	grows	exponentially	depending	on	

the	CCD	temperature,	which	is	consistent	with	the	dark	current	being	caused	by	thermal	noise.	The	empirical	

relationship	of	the	CCD	temperature	and	the	dark	current	level	is	given	by	

GgMw} = U	óòô(0.10	OPPQ,1 + 0.52)	 [DN].	 (3.7)	

Carefully	monitoring	the	dark	images	at	-30	℃,	we	observed	some	pixels	exhibit	anomaly	high	response	levels	

(hot	 pixels).	We	 defined	 hot	 pixels	 as	a	pixel	with	a	 response	 larger	 than	 30	DN/s,	 or	 0.3%	 the	 expected	

intensity	of	the	asteroid.	Hot	pixel	positions	on	14	October	2017	are	listed	in	Table	3.3	for	the	CCD	temperature	

condition	is	cold	(-30	℃).	The	number	of	hot	pixels	increases	as	the	function	of	the	CCD	temperature	(Fig.	3.7).	

This	is	especially	important	during	the	touchdown	sequences,	as	the	CCD	temperature	could	increase	as	high	

as	20	℃.	Thus,	the	absolute	signal	at	the	hot	pixel	locations	should	be	analyzed	carefully.	Note	that,	however,	

the	number	of	hot	pixels	can	be	increased	with	time	due	to	cosmic	ray	irradiation.	The	temporal	variation	in	
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independent	 of	 the	 exposure	 time.	 The	 EMI	pattern	 changes	with	 time	 depending	 on	which	 systems	with	

specific	frequencies	were	active	at	that	time	of	exposure.	0-sec	exposure	images	were	analyzed	line-by-line	

based	on	Fourier	Fast	Transforms	 (FFTs)	 to	extract	 the	periodic	patterns.	Figure	3.10	 (a)	 shows	a	power	

spectrum	of	3	images	taken	at	different	times	(16	April	2015,	24	May	2016,	16	October	2017),	which	indicates	

stronger	peaks	for	some	specific	frequencies.	We	evaluated	the	EMI	from	inverted	FFTs	of	the	extracted	data	

for	frequencies	>	0.001	Hz	and	amplitudes	>	0.3	DN.	Figure	3.10	(b)	shows	the	EMI	structure	variation	during	

the	cruise	phase.	After	the	EMI	is	extracted	from	the	images,	the	amplitude	of	the	EMI	is	evaluated	as	a	half	of	

the	gap	between	the	maximum	and	minimum	signals	in	the	line	(Fig.	3.11).	This	suggests	the	EMI	intensities	

have	not	drastically	changed	during	the	cruise	phase	and	the	highest	EMI	intensity	was	~5	DN,	which	is	<0.2%	

of	the	expected	asteroid	disk	intensity	(~2500	DN).	However,	we	continue	to	monitor	the	EMI	contribution	to	

accurately	remove	the	EMI	from	images	required	for	sensitive	and	advanced	spectral	analyses.	

	

Figure	3.9.	An	example	 image	of	 the	EMI	pattern	(hyb2_onc_20171016_00056_tvf_l2a.fit).	The	presence	of	

periodical	stripe	patterns	over	the	image	was	observed.	
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Figure	 3.10.	 (a)	 The	 results	 of	 FFT	 analysis	 of	 3	 images	 (hyb2_onc_20150416_074730_tvf_l2a.fit,	

hyb2_onc_20160524_124508_tvf_l2a.fit,	 hyb2_onc_20171016_000056_tvf_l2a.fit).	 There	 are	 several	 strong	

peaks	possibly	associated	with	other	system	circuits.	(b)	The	extracted	EMI	signals	have	different	structures	

at	different	observations.	Offsets	are	5	DN	from	each	other.	Sampling	rate	is	3MHz.	
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Figure	3.11.	Variation	in	the	amplitude	of	the	EMI	waves	during	the	cruise	phase.	The	amplitude	is	defined	as	

a	half	of	the	gap	between	maximum	and	minimum	signals	of	EMI	waves.	The	red	line	indicates	the	launch	date.	

	

3.5.	Linearity	

In	this	section,	we	report	on	the	linearity	of	the	ONC-T	CCD	response	based	on	inflight	observations	of	

Flat-Field	(FF)	lamp.	The	CCD	response	to	the	number	of	photons	should	ideally	be	linear.	Preflight	testing	(Fig.	

3.12)	 shows	 that	 the	 response	of	 the	ONC-T	CCD	was	 linear	up	to	3200	DN,	within	an	error	of	0.6%.	This	

response	was	measured	using	an	 integrating	sphere	and	taking	 images	over	a	variety	of	exposure	times	at	

room	temperature.	The	linearity	was	measured	again	inflight	by	observing	the	FF	lamp	through	the	v-band	

filter	at	exposure	times	0.131,	0.348,	0.525	and	0.696	s.	We	took	3	shots	every	2	seconds	for	each	exposure	

time	 to	measure	 the	 output	 stability	 of	 FF	 lamp.	We	 also	measured	 the	 stray	 light	before	 and	 after	 these	

observations	by	turning	off	the	FF	lamp	in	order	to	examine	stray	light	effects	on	this	test.	After	being	corrected	

for	bias	 levels	and	radiator	stray	 light,	 the	bright	{[384,	384]	 ;	 [415,	415]}	and	the	dark	{[384,	480]	 ;	 [415,	

511]}	boxes,	shown	in	Fig.	3.13,	in	each	image	were	averaged.	Inflight-test	results	are	shown	in	Fig.	3.14.	The	

DN	accumulation	rate	is	sensitive	to	small	departures	in	linearity.	Though	the	DN	counts	up	to	3100	DN	appear	

linear	with	exposure	time	(Fig	3.14),	small	changes	in	the	accumulation	rate	(shown	by	the	variations	along	

the	horizontal	lines	in	Fig.	3.14)	indicate	small	deviations	in	the	CCD	linearity	response.	This	test	shows	that	

strong	linearity	(less	than	1%	deviation)	was	achieved	up	to	3100	DN,	whereas	a	10-13%	drop	in	linearity	is	

seen	at	signal	levels	of	3600	DN.	Thus,	exposure	times	should	be	selected	carefully	in	order	not	to	exceed	this	

quantitative	 limit	of	3100DN.	The	decrease	of	 accumulation	 rate	 can	be	 fitted	by	a	 third-order	polynomial	

function,	providing,	the	empirical	relationship	between	the	observed	intensity	Iobs	and	the	ideal	intensity	I0	of	

GöKN = 1.0073GÉ − 2.9285 × 10,õGÉ
u − 3.6434 × 10,tÉGÉ

ú.	 	 	 	 	 	 (Iobs<3100	DN)	 (3.8)	

Using	this	relationship,	the	linearity	can	be	corrected	within	0.1%	error	(red	symbols	in	Fig.	3.14).	
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However,	 to	 distinguish	 this	 scattering	effect	 from	 the	 sharp	 peak	 of	 a	 PSF,	which	 is	 usually	measured	 by	

observing	around	stars	as	infinitely	small	point	light	sources,	we	refer	to	this	wide	spread	attenuation	function	

as	 the	 “broad	PSF”.	The	 sharp	peak	PSF	have	been	already	obtained	as	part	of	 the	preflight	 calibration	by	

Kameda	et	al.	(2017)	and	inflight	calibration	by	Suzuki	et	al.	(2018).	Therefore,	here	we	investigate	the	broad	

PSF	based	on	the	method	described	in	Ishiguro	(2014)	and	will	show	an	application	to	an	Earth	image	obtained	

during	the	Earth-Moon	swing-by.	

	

Methodology:	

The	total	PSF	 ZùFû 	 is	a	summation	of	the	sharp	peak	PSF,	 ZN ,	and	the	broad	PSF,	 ZK:	

ZùFû = ZN + ZK .	 (3.9)	

In	principle,	we	don’t	obtain	images	without	a	PSF	but	what	we	obtain	are	blurred	images.	

GöKN = GÉ ∗ ZùFû = GÉ ∗ (ZN + ZK)	 (3.10)	

where	 GÉ	 is	the	image	without	blur	and	 GöKN 	 is	the	observed	image.	Considering	we	have	to	start	from	blurred	

images	 GöKN ,	what	we	determine	is	the	function	 ZK′,	so	as	to	satisfy	the	following	equation	in	the	sky	region	

where	counts	from	 ZN 	 are	negligible:	

GöKN ∗ Z†K = GÉ ∗ ZK	 (3.11)	

Then	we	can	evaluate	blurred	counts	due	to	a	PSF	with	 GöKN 	 and	 ZK′.	 	 As	is	described	in	Ishiguro	(2014),	we	

also	assumed	that	the	 ZK′	 can	be	expressed	as	the	summation	of	Gaussian	functions:	

Z′K(°) =¢
£L

√2•	¶L
exp ™−

°u

2¶L
u´

n

LÇt

	 (3.12)	

where	 °	 [pix]	is	the	distance	from	a	point	source,	 £L 	 and	 ¶L	 are	constants	(N=1	to	6),	where	 ¶L = 2Lzu	(� ≤

4),	¶≠ = 110,	and	 ¶õ = 710.	The	effect	of	scattered	light	can	then	be	corrected	as	

GÉ ∗ ZN = GöKN − GöKN ∗ Z′K	 (3.13)	

Assuming	that	the	 ZN 	 is	sharp	enough	to	satisfy	 ZN = ÆNØ(0,0),	where	 ÆN 	 is	the	contribution	due	to	the	sharp	

peak	PSF,	and	

GÉ = (GöKN − GöKN ∗ Z†K)/ÆN	 where	 (3.14)	

ÆN = ∫2•°ZN	r°.	 	

Preflight	disk	object	images	were	obtained	through	all	filters	with	different	sized	disks	placed	in	the	FOV	(Fig.	

3.16).	We	 determined	 the	 £L 	 Gaussian	 coefficient	 values	 sequentially,	 using	a	 bisection	method	 from	 the	

broader	 components	 (beginning	with	 £õ )	 to	 narrower	 component	 (ending	with	 £t ).	We	 performed	 this	

analysis	to	derive	the	coefficients	 £L 	 for	each	filter	to	reduce	the	residual	signal	in	sky	region	farther	than	8	

pixels	from	edge	of	the	object	to	<1%	of	the	object’s	signal	by	using	Eq.	(3.14).	Small	disk	objects	in	the	FOV	

were	useful	in	deriving	 £L 	 for	smaller	values	of	 ∞	 and	large	disk	objects	for	larger	values	of	 ∞.	The	coefficients	

we	obtained	are	listed	in	Table	3.4	and	Fig.	3.17	shows	the	broad	PSF	on	AMICA	and	ONC-T.	The	contribution	
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of	the	broad	PSF	on	ONC-T	is	smaller	than	that	observed	within	the	AMICA	image	data	sets.	

	

Evaluation:	

The	validity	of	the	broad	PSF	correction	is	assessed	with	applications	to	the	Earth	images	obtained	during	

the	Earth-Moon	gravity	swing-by.	The	broad	PSF	corrected	 images	are	 shown	 in	Fig.	3.18	with	brightness	

variations	across	horizontal	profiles	displayed	to	show	the	reduction	 in	scattered	 light.	Comparing	the	sky	

close	to	the	object	limb,	the	residual	is	less	than	1%	and	now	the	ghost	can	be	recognized	more	clearly	than	

the	scattered	light.	

The	broad	PSF	correction	is	also	verified	by	using	a	saturated	Mars	image	observed	on	25	May	2016.	In	

this	test,	the	strategy	is	that	if	a	point	source	object	is	observed	with	a	long	exposure	time,	the	broad	PSF	can	

be	observed	more	clearly.	Mars	was	imaged	almost	as	the	point	source	(~1.4	pixel	in	diameter	in	the	FOV).	We	

obtained	the	images	using	the	p-band	filter	with	two	different	exposure	times,	a	proper	exposure	time	of	0.044	

s	and	a	long	exposure	time	of	178.26	s.	The	dark	current	and	the	radiator	stray	light	corrections	were	applied	

before	the	intensity	analysis	for	the	broad	PSF.	The	proper	exposure	images	are	used	to	measure	the	radiation	

flux	from	the	object	by	fitting	the	observed	intensity	with	a	Gaussian	function	 GvMwN ,	which	is	equivalent	to	

the	Mars	signal	convolved	by	only	the	sharp	peak	PSF.	Here,	the	Full-Maximum-Half-Width	(FMHW)	of	 the	

Gaussian	function	is	1.53,	which	is	consistent	with	the	sharp	peak	PSF	obtained	in	Kameda	et	al.	(2017)	and	

Suzuki	et	al.	(2018).	The	DN	count	of	the	long	exposure	image	was	estimated	by	multiplying	by	the	ratio	of	two	

exposure	times:	 	

≤≥ö[¥ = ™
U≥ö[¥
Uµwöµ

´≤µwöµ 	 (3.15).	

Thus,	 the	 scattered	 light	 around	 Mars	 is	 estimated	 by	 ≤≥ö[¥ ∗ ZK′ .	 Figure	 3.19	 compares	 the	 observed	

scattered	light	with	the	long	exposure	and	the	estimation	of	our	broad	PSF.	Thus,	our	broad	PSF	obtained	based	

on	preflight	images	are	consistent	with	the	observed	scattered	light	from	a	point	source.	
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Figure	3.17.	Comparison	of	the	broad	PSF	on	ONC-T	(solid	lines)	and	AMICA	(dotted	lines).	

	

Table	3.4.	The	broad	PSF	coefficients	Ai	 (10-4)	and	the	broad	PSF	contribution	 ∫∂∑∏π′∫	ª∏	 on	ONC-T	and	

AMICA	 by	 Ishiguro	 (2014).	 Note	 that	 the	 contribution	 of	 broad	 PSF	 on	 AMICA	 is	 evaluated	 by	 π∫† =

[∫∂∑∏πº	ª∏/∫∂∑∏πΩæø	ª∏] × π∫.	

ONC-T	 A1	 A2	 A3	 A4	 A5	 A6	
¿2•°Z′K	r°	

ul	(0.4	µm)	 12.0	 0.7	 0.7	 0.5	 0.7	 0.3	 0.11	

b	(0.48	µm)	 10.0	 0.5	 0.0	 0.0	 0.4	 0.2	 0.07	

v	(0.55	µm)	 9.0	 0.0	 0.2	 0.1	 0.4	 0.2	 0.07	

Na	(0.59	µm)	 10.0	 0.3	 0.4	 0.0	 0.3	 0.2	 0.08	

w	(0.70	µm)	 11.0	 0.4	 0.5	 0.2	 0.2	 0.3	 0.09	

x	(0.86	µm)	 10.0	 1.3	 0.6	 0.1	 0.6	 0.5	 0.14	

p	(0.95	µm)	 9.0	 1.5	 1.2	 0.1	 1.1	 0.7	 0.19	

	

AMICA	 A1	 A2	 A3	 A4	 A5	 A6	 Contribution	of	 ZK 	

ul	(0.38	µm)	 11.4	 7.6	 1.1	 1.0	 0.8	 0.7	 0.23	

b	(0.43	µm)	 9.7	 1.5	 0.3	 0.4	 0.4	 0.5	 0.13	

v	(0.55	µm)	 9.6	 1.3	 0.3	 0.4	 0.4	 0.5	 0.13	

w	(0.70	µm)	 9.2	 1.4	 0.6	 0.7	 0.6	 0.5	 0.15	

x	(0.86	µm)	 7.9	 3.1	 1.8	 2.4	 1.9	 0.4	 0.20	

p	(0.96	µm)	 7.9	 4.0	 6.6	 3.2	 5.1	 1.4	 0.53	

zs	(1.01	µm)	 33.5	 10.7	 4.0	 6.0	 6.4	 3.0	 0.95	
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Figure	3.18.	Enhanced	Earth	images	before	(the	first	row	images)	and	after	(the	second	row	images)	the	

broad	PSF	scattered	light	correction.	Horizontal	profiles	along	red	lines	of	them	are	shown	in	the	third	row.	

	
Figure	3.19.	Observed	 scattered	 light	as	 a	 function	of	distance	 from	Mars,	 comparing	with	our	broad	PSF	

obtained	preflight.	Note	that	close	part	from	Mars	is	affected	by	the	sharp-peak	PSF	(gray	hatch).	

	

3.6.2.	Ghost	Effect	

There	is	noise	within	the	ONC	system	due	to	reflections	between	optics,	such	as	filters,	lens,	and	the	CCD,	

that	create	an	effect	captured	within	the	 image	hereafter	referred	to	as	the	“ghost	effect”.	Because	the	ONC	

optics	are	axi-symmetric,	a	ghost	image	usually	appears	at	a	symmetrical	location	about	the	optical	axis.	Here,	

we	investigated	the	intensity	of	the	ghost	effect	and	the	position	of	the	ghost	image	within	the	image	frame.	

Figure	3.20	displays	examples	of	ghosts	in	the	images	obtained	during	the	Earth-Moon	swing-by.	The	degree	

or	magnitude	of	the	ghost	effect	is	measured	to	be	weaker	than	0.1	%	of	the	intensity	of	the	observed	object	

for	all	filters,	however,	there	is	a	wavelength	dependency	to	the	magnitude	of	the	effect.	For	example,	v-,	Na-,	

and	w-filters	do	not	have	ghost	effects	larger	than	other	CCD	noise	sources,	such	as	MEI	noise,	dark	noise,	and	

shot	noise,	while	the	ul-,	x-,	p-,	and	wide-filters	all	suffer	from	a	small	(<0.1%)	but	detectable	ghost	effect.	From	

the	Earth-Moon	swing-by	 images,	we	determine	the	reflection	coefficients	(the	 intensity	ratio	between	the	

ghost	and	object)	for	the	filters	as	0.0033,	0.0012,	<0.0001,	<0.0001,	<0.0001,	0.0045,	0.0065,	and	0.0028	from	

short	to	long	wavelength	and	the	wide	filter,	respectively.	The	light	reflects	symmetrically	about	the	sub-pixel	

position	at	~	(496.5,	501).	Using	these	values,	examples	of	ghost	removal	are	shown	in	Fig.	3.21.	It	should	be	

noted	that	when	the	object	is	far	from	the	center	of	FOV,	this	correction	method	is	insufficient	(Fig.	3.22).	The	

ghost	effect	on	images	that	include	the	object	at	a	corner	is	much	weaker	than	that	on	images	which	include	

the	object	at	the	center.	This	may	indicate	that	the	intensity	of	the	ghost	effect	is	a	function	of	the	distance	from	
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of	the	stray	light	was	evaluated	at	the	highest	intensity	part	of	the	image	frame,	in	the	same	way	as	Suzuki	et	

al.	 (2018),	and	we	normalized	 the	 intensity	by	 the	distance	 from	 the	Sun.	The	definition	of	 the	spacecraft	

attitude	was	referred	to	Sec.	8.1	 in	Suzuki	et	al.	 (2018).	The	reference	attitude	of	 the	spacecraft	 is	 that	 the	

antenna	is	pointing	to	the	Earth.	Thereby	the	value	of	 ¡	 corresponds	to	the	phase	angle,	i.e.,	the	Earth-Ryugu-

Sun	angle,	and	is	automatically	determined	by	the	position	of	the	Earth,	Ryugu	and	the	Sun	at	the	observation	

time.	We	expect	that	 ¡	 will	be	change	from	-20˚	to	-10˚	before	the	first	touchdown.	The	trend	of	the	stray	light	

did	not	change	during	the	3.5	years	of	the	cruise	phase.	That	is,	the	strongest	part	is	always	in	the	(+H,	+V)	

corner,	and	the	stray	light	component	gradually	weakens	towards	the	opposite	(-H,	-V)	corner	(see	Fig.	21	in	

Suzuki	 et	 al.	 (2018)).	 Because	 attitudes	with	 ¬ < −7° 	 do	 not	 have	 strong	 stray	 light	 component,	 we	 are	

planning	to	obtain	images	of	the	target	asteroid	at	those	attitudes	with	negligible	stray	light,	<3.8	DN/s	at	1	

AU,	for	global	mappings.	On	the	other	hand,	for	the	proximity	observations,	such	as	the	lander	releases,	the	

Small	Carry-on	 Impactor	 (SCI)	 crater	 scan	 observations,	 and	 touchdowns,	when	 the	 observation	attitudes	

allow	stray	light	at	the	 	 ~1000	DN/s	level	may	contaminate	the	images.	Here,	we	model	the	stray	light	as	a	

function	of	spacecraft	attitude	towards	the	Sun	to	provide	a	method	for	removing	this	component	from	the	

images.	

Based	on	inflight	observations,	the	spatial	patterns	of	the	radiator	stray	light	does	not	change	drastically	

with	 the	 spacecraft	 attitude.	Moreover,	 the	 stray	 light	 component	 is	 reproducible	 for	 the	 same	 spacecraft	

attitude	when	the	 intensity	 is	normalized	by	the	square	of	 the	heliocentric	distance	of	 the	spacecraft	(Fig.	

3.23).	Thus,	we	separately	modeled	the	stray	light	pattern	with	intensity	variation	(modeled	at	the	center	of	

FOV)	and	the	spatial	distribution.	

Investigations	of	a	strong	stray	light	component	for	possible	attitudes	during	the	rendezvous	phase	was	

conducted	on	17,	19,	and	21	October	2017,	especially	with	the	spacecraft	twisting	angle	of	 ¬ < −5°.	First,	we	

empirically	modeled	the	intensity	of	the	stray	light	at	the	center	of	FOV	with	a	polynomial	function:	

GN≥ = (−0.0879¡ú − 5.616¡u − 119.4¡ − 603.8)	

(−0.0037¬u + 0.113¬ + 0.956)	 [DN/s].	

(3.16)	

The	comparison	of	the	stray	light	intensity	model	and	the	observed	intensity	is	shown	in	Fig.	3.24.	By	dividing	

the	 stray	 light	 images	 by	 the	 central	 intensity,	 the	 spatial	 distributions	 can	 be	 examined.	 We	 bin	 those	

normalized	patterns	into	8	×	8	(average	of	64	×	64	pixels)	images	to	smooth	out	the	noise.	After	normalization	

and	smoothing,	we	applied	principal	component	analysis	to	those	images	and	extracted	the	average	pattern	

and	 the	 principal	 components	 of	 the	 stray	 light	 patterns.	 The	 principal	 component	 analysis	 extracts	 the	

orthogonal	components	with	highest	variance	to	lower	variance.	The	component	with	highest	

variance,	the	first	principal	component,	may	explain	the	stray	light	pattern	change	most.	The	components	with	

small	variance	could	be	noise.	Thus,	the	components	with	high	variance	are	enough	to	express	the	variation	

in	stray	light	pattern.	In	our	analysis,	The	first	principal	component	(PC1)	score	contains	81%	of	variance	and	
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any	position	within	an	 image	 frame.	 After	 deriving	 the	 preflight	 flat-field	 correction	 using	 the	 integrating	

sphere	 measurements,	 the	 front	 hood	 position	 of	 ONC-T	 was	 changed	 slightly	 during	 disassembly	 and	

assembly	at	the	launching	site.	Thus,	all	ONC-T	bands	are	expected	to	have	different	sensitivity	distributions	

(flat-fields)	inflight	than	those	obtained	preflight	using	the	integrating	sphere	images	(Kameda	et	al.,	2017;	

Suzuki	et	al.,	2018).	In	fact,	~10%	differences	in	the	lunar	brightness	were	confirmed	between	images	with	

the	Moon	located	in	the	center	of	an	image	and	those	with	the	Moon	located	in	the	corner	for	all	filter	bands	

(Suzuki	et	al.,	2018).	The	lunar	images	were	acquired	during	Hayabusa2’s	Earth-Moon	flyby	on	3	December	

2015,	which	provided	the	gravity	assist	to	reach	its	target,	162173	Ryugu.	The	lunar	images	were	corrected	

with	an	additional	 flat-field	 correction	derived	 from	measurements	 taken	with	a	portable	 flat	 light	 source	

conducted	after	the	hood	position	was	slightly	changed.	By	applying	the	additional	flat-field	correction,	the	

discrepancy	between	 lunar	brightness	values	was	reduced	to	2%	in	all	bands	except	 for	ul-band,	while	 the	

relatively	large	discrepancies	(~3%)	still	remain	in	the	ul-band	(Suzuki	et	al.,	2018).	 	

For	evaluating	the	validity	of	the	flat-field	corrections	and	investigating	the	detailed	structure	of	the	current	

sensitivity	distribution	in	ul-band,	a	star	observation	campaign	was	conducted	from	12	to	14	October	2017.	

During	this	campaign	four	bright	stars	were	observed	under	five	different	attitude	conditions	of	the	Hayabusa2	

spacecraft	to	place	the	stars	within	different	locations	within	the	ONC-T	FOV.	The	four	bright	stars	observed	

were	Phi,	Sigma,	Tau,	and	Zeta	Sagittarii	whose	locations	are	close	enough	to	each	other	to	be	observable	at	

the	same	time	within	the	FOV.	Star	locations	in	ONC-T	image	frame	during	the	observation	campaign	cover	

almost	the	whole	FOV	of	the	image	frame	(Fig	3.27(a)).	Star	observations	were	conducted	with	exposure	times	

of	16.7	and	22.8	seconds	for	v-band,	and	16.7	and	67.2	seconds	for	ul-band,	to	obtain	sufficient	counts	from	

the	different	star	brightness	to	measure	the	CCD	sensitivity.	

The	expected	flux	from	a	star	Jstar,n	through	n-filter	can	be	determined	from	

	

oVÕIH,[ =
∫de/Œ*)(d)fD(d)gd

∫dfD(d)gd
,	 (3.18)	

	

where	Jstar	[W/m2/µm]	is	the	irradiance	from	the	star.	This	value	should	be	proportional	to	the	total	digital	

count	rate	of	the	observed	star	obtained	by	ONC-T:	

(∑
œ–,—
“–,—

–,— )/A

∫ aostar(a)Φ’(a)ra
= Æ	(÷◊’ÿU∆’U),	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3.19)	

	

where	Ii,j	is	the	DN	counts	and	fi,j	is	a	coefficient	of	flat	field	correction	at	(i,	j)	pixel.	This	indicates	that	left	hand	

side	of	Eq.	(3.19)	should	have	the	same	value	 for	any	star	and	any	exposure	time,	 if	 flat	 field	correction	 is	

perfect	at	all	locations.	In	other	words,	if	a	stellar	observation	has	a	smaller	value	for	the	right	hand	side	of	Eq.	

(3.19)	than	other	stars,	the	flat	field	correction	at	the	position	is	insufficient,	and	thus	the	corrected	sensor	
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sensitivity	is	smaller	than	expected.	

To	 evaluate	 sensor	 sensitivities	 at	 the	 star	 positions,	 we	 performed	 flat	 field	 correction	 with	 those	

proposed	 in	Suzuki	et	al	(2018)	after	performing	dark	signal	subtraction	and	hot-pixel	reduction.	Then	we	

measured	 the	 total	 DN	 counts	 for	 each	 star	 by	 integrating	 the	DN	 counts	 in	 a	 20-pixel	 radius	around	 the	

brightness	center	of	the	star.	The	only	exception	to	this	was	for	Tau	Sagittarii	located	at	(H,	V)=(86.7,	619.7)	

with	an	exposure	time	of	67.2	sec.	In	this	case	we	used	a	15-pixel	radius	for	integrating	the	DN	counts	to	avoid	

including	huge	counts	from	a	cosmic	ray	hit	located	nearby	the	star	in	the	FOV.	In	these	calculations,	we	used	

the	 star	 flux	 from	 Alekseeva	 et	 al.	 (1996),	 which	 is	 available	 in	 the	 database	 VisieR	 (http://vizier.u-

strasbg.fr/viz-bin/VizieR).	

Table	3.5	summarizes	the	values	of	normalized	C	which	are	calculated	from	as	C	values	calculated	from	

Eq.	(3.19)	in	each	observation	are	normalized	to	the	mean	C	value	for	each	filter.	Examination	of	the	standard	

deviations	of	C	values	shows	that	the	v-band	image	frame	achieves	uniform	sensitivity	with	a	deviation	<	2%	

with	no	significant	outliers.	Considering	that	the	standard	deviation	includes	errors	in	star	irradiance	and	in	

noise	reduction	processes,	the	2%	deviation	can	be	considered	as	an	upper	limit	of	the	sensor’s	uniformity	in	

sensitivity.	In	addition,	gradual	sensitivity	variations	across	the	image	can	be	observed	in	the	v-band	FOV	(Fig.	

3.27(b)),	indicating	that	additional	flat	field	corrections	could	be	performed,	though	it	is	hard	to	derive	a	high-

accuracy	 flat-field	 correction	 only	 from	 this	 star	 observation	 campaign	 due	 to	 the	 sparseness	 of	 the	 star	

positions	across	the	FOV.	

The	ul-band	image	frame	has	a	larger	sensitivity	deviation	(3.9%)	across	the	image	scene	compared	to	

the	sensitivity	deviation	in	the	v-band.	A	gradual	sensitivity	variation	across	the	FOV	(low	sensitivity	around	a	

lower-left	image	corner	and	high	sensitivity	in	upper	region)	can	also	be	observed	in	ul-band	(Fig.	3.27(c)).	

Especially	at	positions	of	(H,	V)	=	(85.8,	903.8)	and	(38.6,	958.1),	C	values	(denoted	by	underlines)	are	6-9	%	

smaller	than	a	mean	value,	indicating	a	decline	in	sensor	sensitivity	uniformity	near	the	image	edges.	From	

these	results,	 the	brightness	 inconsistency	seen	 in	the	 lunar	ul-band	observation,	reported	by	Suzuki	et	al.	

(2018),	could	be	explained	by	the	worse	uniformity	near	the	image	corners.	This	could	affect	mapping	and	

photometric	analysis	especially	in	the	peripheral	regions	in	the	FOV.	This	decreased	uniformity	in	the	ul-band	

flat-field	may	be	fundamentally	caused	by	the	preflight	measurements.	During	the	preflight	integrating	sphere	

measurements	stray	light	contributions	from	the	gap	between	the	filter	wheel	and	baffle	were	detected	(see	

“FW	roundabout”	stray	light	description	in	Suzuki	et	al.,	2018).	The	FW	roundabout	stray	light	has	a	stronger	

contribution	at	the	shorter	wavelengths,	thus	preferentially	contaminating	the	ul-band	images.	It	should	be	

noted	that	if	we	focus	only	on	the	stars	observed	inside	of	the	radius	of	400	pix	from	the	image	center,	where	

the	 standard	 deviation	 of	 C	 values	 is	 2.2%	 in	 the	 ul-band,	 indicating	 we	 may	 have	 sufficient	 sensitivity	

uniformity	when	we	use	only	the	center	of	FOV.	
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3.9.	Radiometric	Calibration	

In	this	section,	the	conversion	factor	from	count	per	seconds	(DN/s)	to	radiance	(W/m2/µm/sr),	referred	to	

as	“radiometric	calibration”,	is	discussed.	First,	the	temporal	variation	in	sensitivity	is	discussed	in	Sec.	3.9.1.	Suzuki	

et	al.	(2018)	used	the	sensitivity	corrected	by	the	typical	temperature	dependence	provided	by	the	manufacturer	

(E2V).	 However,	 the	 temperature	 dependence	 had	 not	 been	 evaluated	 inflight	 at	 that	 time.	 Thus,	 we	 second	

measured	the	effect	of	CCD	temperature	on	the	sensitivity	based	on	inflight	flux	measurements	taken	of	Jupiter	

(Sec.	3.9.2).	The	objective	in	this	section	is	to	update	the	sensitivity	conversion	based	on	inflight	measurements.	

We	evaluate	the	sensitivity	conversion	in	two	ways;	1)	based	on	the	hardware	specifications	of	components,	such	

as	CCD,	filters,	and	lens	of	the	ONC-T	(Sec.	3.9.3),	and	2)	based	on	star	observations	(Sec.	3.9.4).	Finally,	the	updated	

conversion	to	radiance	is	validated	based	on	ONC	observations	of	the	Moon,	Jupiter	and	Saturn	as	discussed	in	Sec.	

3.9.5.	

	

3.9.1.	Time-Dependent	Sensitivity	Change	

The	FF	lamp	is	designed	to	monitor	the	sensitivity	(absolute	value	and	spatial	pattern)	of	the	CCD	during	the	

mission.	Table	3.6	summarizes	the	FF	lamp	observations	taken	during	the	cruise	phase.	FF	lamp	observations	are	

included	 in	 the	 default	 routine	 of	 the	 health-checkout	 sequence	 of	 operations.	 Health-checkouts	 have	 been	

conducted	 four	 times	 over	 the	 cruise	 phase	 after	 the	 initial	 post-launch	 checkout.	 An	 extra	 observation	 on	 5	

December	2017	was	conducted	to	monitor	the	linearity	properties	of	the	CCD	(see	Sec.	3.5).	Only	v-band	was	used	

in	this	linearity	measurement,	and	only	a	section	(128×128	pixels)	of	the	FOV	was	downlinked	for	examination.	

	 Figure	3.28	 shows	an	example	 the	ONC-T	 images	 taken	of	 the	FF	 lamp	output	on	16	October	2017.	The	

brightness	 gradient	 in	 the	 vertical	 direction	 of	 the	 ul-	 and	 b-band	 images	 are	 characteristic	 of	 the	 FF	 lamp	

properties,	due	 to	 the	FW	roundabout	stray	 light.	Figure	3.29	examines	 the	brightness	gradient	 in	 the	vertical	

direction	in	the	FOV	for	all	filters	by	displaying	the	ratio	of	top	quarter	of	the	image	(#1)	and	the	bottom	quarter	of	

the	image	(#4).	The	reason	for	the	strong	gradation	at	the	short	wavelengths	can	be	explained	as	follows.	The	FF	

lamp	radiance	is	close	to	a	2000	K	black	body	radiator	that	has	peak	emission	at	long	wavelengths.	For	example,	

411.8	 618.9	 1.022	 	 1.030	 	 (too	low)	 1.008	 	

Zeta	

282.4	 957.0	 0.985	 	 1.005	 	 0.999	 	 0.971	 	

283.3	 672.4	 1.003	 	 1.016	 	 1.015	 	 1.002	 	

38.6	 958.1	 0.993	 	 0.996	 	 0.921	 0.911	

607.4	 956.2	 0.993	 	 1.009	 	 0.972	 	 0.974	 	

Standard	

deviation	(%)	
	 	 1.6	 3.9	
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the	energy	flux	from	the	FF	lamp	at	the	p-band	wavelength	range	is	about	500	times	larger	than	the	flux	at	the	ul-

band	wavelength.	 Therefore,	 the	 FW	 roundabout	 stray	 light	 is	 a	 negligible	 percentage	 of	 the	 transmitted	 light	

through	the	longer	wavelength	filters	but	is	a	measurable	percentage	of	the	transmitted	light	through	the	short	

wavelength	 (e.g.,	 ul-	 and	 b-band)	 filters.	 The	 difference	 between	 segments	 #1	 and	 #4	 are	 due	 to	 the	 spatial	

distribution	bias	of	the	FW	roundabout	stray	light.	This	FW	roundabout	stray	light	 is	not	expected	to	affect	the	

observations	of	Ryugu,	since	the	reflectance	spectrum	of	Ryugu	is	relatively	flat	and	the	solar	radiance	spectrum	

has	a	peak	at	the	v-band	wavelength	range	of	only	~	2	times	larger	than	ul-band	wavelength	range.	

Average	signal	values	of	the	FF	lamp	images	are	used	to	monitor	 the	time	variations	in	the	CCD	response.	

Figure	3.30	shows	the	time	variation	of	the	count	flux	of	the	FF	lamp	images	obtained	during	the	cruise	phase.	The	

FF	lamp	has	two	modes	of	voltage	settings	which	is	selected	depending	on	the	sensitivity	of	filters	used	to	image	

the	lamp.	Figure	3.30(a)	shows	the	“High	voltage	mode”	data	(used	for	the	shorter	wavelength	filters:	ul-	to	Na-

bands),	and	Fig.	3.30(b)	shows	the	“Low	voltage	mode”	data	(used	for	the	longer	wavelength	filters:	w-	to	p-,	and	

wide-bands).	To	show	relative	sensitivity	changes,	the	measured	output	of	the	FF	lamp	is	normalized	to	the	output	

measured	on	16	April	2015.	Note	that	the	data	acquired	on	8	July	2017	are	excluded	from	the	plot	 lines	due	to	

possible	contamination	by	radiator	stray	light	affects	(Sec.	3.7).	 	

Figure	3.30(a)	indicates	that	the	sensitivity	of	the	shorter	wavelength	filters	(ul-	to	Na-bands)	decreased	after	

the	initial	checkout.	Figure	3.30	(b)	also	indicates	that	the	sensitivity	of	the	longer	wavelength	filters	(w-	through	

p-	and	wide-bands)	decreased	after	the	initial	checkout.	However,	we	cannot	conclude	the	degradation	is	real	due	

to	 the	 unstable	 emission	 from	 the	 “Low	 voltage	mode”	 of	 the	 FF	 lamp	 used	 for	 the	 preflight	 long	wavelength	

measurements.	Since	the	“High	voltage	mode”	was	more	stable	during	the	pre-flight	measurements,	we	are	limiting	

our	discussion	to	the	ul-to-Na	bands	which	were	characterized	using	the	FF	lamp	“High	voltage	mode”.	There	are	

two	possible	explanations	for	the	decreasing	trend	in	the	“High	voltage	mode”	data;	1)	degradation	of	the	FF	lamp,	

e.g.,	 low	 electric	 current	 and	 2)	 degradation	 in	 the	 transmittance	 of	 the	 filters	 due	 to	 exposure	 to	 the	 space	

environment.	 During	 the	 initial	 checkout,	 the	 instrument	 temperatures	 were	 slightly	 higher	 than	 those	 of	

subsequent	observations	(Table	3.6).	Due	to	these	temperature	differences	(FF	lamp	and	CCD),	we	inter-compare	

the	observations	acquired	after	16	April	2015,	which	were	obtained	under	similar	temperature	conditions.	After	16	

April	2015,	the	FF	lamp	flux	is	more	stable,	decreasing	~1%	for	the	b-to-Na	bands	and	decreasing	~2.5%	for	the	ul-

band.	 This	 demonstrates	 that	 the	 ul-band	has	 a	 steeper	 decrease	 in	 sensitivity	 than	 the	 other	 three	 bands.	 To	

investigate	the	reason	for	the	decrease	in	sensitivity,	we	compare	the	local	measured	output	change.	Figure	3.29	

shows	the	measured	output	change	for	segments	#1	and	#4.	Although	segment	#1	is	more	contaminated	by	the	FW	

roundabout	stray	light,	the	decreasing	rate	in	the	measured	output	is	almost	same.	Thus,	this	decrease	in	sensitivity	

is	more	likely	caused	by	degradation	of	the	FF	lamp.	 	

Since	the	main	purpose	of	this	5	December	2017	observation	was	to	examine	the	linearity	response,	only	the	

ONC-T	v-filter	was	used.	Additionally,	to	reduce	the	data	downlink	size,	only	a	portion	(128x128	pixels)	of	the	FOV	
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was	 downlinked,	 using	 the	 region	 of	 interest	 (ROI)	 function	 form	 the	 on-board	 processing	 algorithms.	 Time	

variation	 in	 the	 FF	 lamp	 output	 in	 this	 area	 of	 the	 CCD	 are	 plotted	 in	 Fig.	 3.31.	 Although	 the	 temperature	

environment	 (Table	 3.6)	 during	 this	 observation	 is	 very	 similar	 to	 the	 environment	 of	 16	 October	 2017	

observation,	 there	 is	a	 small	 increase	 (~0.4%)	 from	the	16	October	2017	observation.	 It	 is	 suspected	 that	 this	

random	trend	may	be	due	to	slight	stabilities	in	the	FF	lamp	output.	

	 	 In	summary,	we	conclude	that	the	count	flux	from	the	FF	lamp	have	a	long-term	decreasing	trend	(~1–2.5%)	

between	16	April	2015	to	5	December	2017.	There	are	two	plausible	candidates	for	the	decreased	count	flux:	(1)	

degradation	of	the	FF	lamp,	and	(2)	degradation	of	the	filters	under	the	space	environment.	To	resolve	whether	the	

sensitivity	degradation	in	the	CCD	is	real	or	not,	additional	observations	are	needed;	especially,	repeat	calibration	

observations	using	stars	that	have	already	been	observed	by	the	ONC.	

	

Table	3.6.	Summary	of	the	FF	lamp	observations	held	after	launch.	

Date	
Observation	

purpose	
Note	 Temperature	[℃]	

	 	 	 ONC-AE	 ONC-T	CCD	

	 	 	 Start	 End	 Start	 End	

11	December	2014	
Initial	 	

checkout	
7	band	+	wide	band	 -4.49	 -4.10	 -14.79	 -14.79	

16	April	2015	
Health	

checkout	
7	band	+	wide	band	 -6.46	 -6.20	 -29.56	 -29.54	

10	September	2015	
Health	

checkout	
7	band	+	wide	band	 -6.95	 -6.46	 -29.46	 -29.43	

8	July	2017	
Health	

checkout	

7	band	+	wide	band.	

Solar	Stray	light	was	

contaminated	

-7.05	 -7.02	 -28.77	 -28.77	

16	October	2017	
Health	

checkout	
ONC-T	(7	band	+	wide)	 -5.77	 -5.77	 -28.59	 -28.91	

5	December	2017	
Linearity	

observation	

ONC-T	v	band.	A	small	

part	of	the	FOV	is	cutout.	
-5.77	 -5.77	 -28.72	 -28.72	
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with	 the	 SP/SELENE	 lunar	 reflectance	 model	 (Suzuki	 et	 al.,	 2018).	 In	 this	 section,	 we	 examine	 the	 Jupiter	

observations	taken	by	the	ONC-T	with	different	CCD	and	ELE	temperatures	to	provide	a	model	of	the	sensitivity	

dependence	from	hardware	temperatures	each	filter	band.	

We	observed	Jupiter	using	ONC-T	from	May	16	–	17,	2017.	The	CCD	temperature	was	controlled	by	the	heater	

to	range	between	-29	℃	to	+25	℃	and	the	ELE	temperature	from	-10	℃	to	0	℃	(Table	3.7).	Because	of	Jupiter's	

non-uniformity	 of	 reflectance,	 we	measured	 the	 Jupiter’s	 brightness	 over	 4	 rotation	 periods	 under	 a	 different	

temperature	for	each	period,	for	a	total	of	4	rotations.	Figure	3.32	shows	the	normalized	flux	dependency	to	the	

CCD	temperature.	The	effect	of	the	CCD	temperature	is	much	larger	than	that	of	ELE	temperature	especially	for	the	

long	wavelength	filter	bands.	As	the	CCD	temperature	increases,	the	sensitivities	of	the	ul-	to	w-bands	decrease,	

while	the	sensitivities	of	the	x-	and	p-bands	increase.	We	assumed	that	the	sensitivity,	Sn,	can	be	expressed	as	a	

function	of	the	CCD	temperature,	TCCD,T;	

\1 = \É,[0∆PPQ,[0OPPQ,1 + 30; + 1;,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3.20)	

where	S0,n	 is	 the	sensitivity	for	n-band	at	 the	 reference	temperature	 OPPQ,1 = −30℃	 and	an	 is	 the	 temperature	

dependence	factor	determined	by	χ2-fitting.	The	sensitivity	of	each	band	at	any	temperatures	of	TCCD,T	(-30℃	 to	

+25	℃)	can	be	calculated	by	Eq.	(3.19)	and	the	values	listed	in	Table	3.8,	where	the	2-σ	error	is	based	on	deviations	

of	the	measurements	from	Eq.	(3.19).	Similarly,	the	ELE	temperature	dependence	can	be	expressed	as	(Table	3.9):	 	

\′1 = \É,[0∆R$R,[(OR$R + 10) + 1;.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3.21)	

The	reference	ELE	temperature	is	-10	℃.	Note	that,	the	ELE	temperature	dependences	for	ul-to-Na	bands	are	nearly	

0	within	the	2-σ	errors,	showing	no	dependence	on	the	ELE	temperature	in	the	CCD	and	filter	response.	However,	

w-to-p	bands	show	noticeable	dependences	from	ELE	temperature.	The	CCD	temperature	has	the	dominant	effect	

on	the	CCD	and	filter	responses.	Thus,	we	use	Eq.	(3.19)	to	quantify	the	CCD	sensitivity	at	CCD	temperature	ranging	

from	-30℃	to	25℃.	Although	the	dependence	from	ELE	temperature	might	be	observed	for	longer	wavelengths,	we	

do	 not	 apply	 ELE	 temperature	 correction	 for	 first	 products	 because	we	 do	 not	 have	 physical	 explanations	 of	

dependence	difference	in	filters,	while	the	dependence	from	CCD	temperature	for	each	band	should	be	different	

due	to	the	temperature	dependence	of	quantum	efficiency	in	different	wavelengths.	To	apply	the	ELE	temperature	

correction,	further	investigation	is	needed.	For	example,	we	will	be	able	to	test	the	correction	to	images	obtained	

during	 close	 approaches.	 While	 this	 does	 not	 account	 for	 sensitivity	 variations	 caused	 by	 other	 hardware	

temperatures,	for	example,	the	error	introduced	by	the	ELE	temperature	effect	is	small	(<0.1%/℃	for	the	ul-to-Na	

bands	and	<0.3%/℃	for	the	w-to-p-band).	
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1	 -27.94	 -9.89	 16	 22:30	 22:33	

2	 -28.06	 -9.89	 17	 1:00	 1:03	

3	 -8.66	 -9.37	 17	 3:30	 3:33	

4	 -9.18	 -9.37	 17	 6:00	 6:03	

1	 11.93	 -8.84	 17	 8:30	 8:33	

2	 11.41	 -8.84	 17	 11:00	 11:03	

3	 25.11	 -8.32	 17	 13:30	 13:33	

4	 25.22	 -8.32	 17	 16:00	 16:03	

1	 -29.24	 -3.63	 17	 18:30	 18:33	

2	 -28.46	 -3.63	 17	 21:00	 21:03	

3	 -28.72	 0.19	 17	 23:30	 23:33	

4	 -28.77	 -0.03	 18	 2:00	 2:03	

	

Table	3.8.	Sensitivity	dependence	from	CCD	temperature	for	all	band-pass-filters.	The	errors	cited	are	the	2-σ	

errors.	

band	 ∆PPQ,[[/℃]	

ul	(0.40	µm)	 	 −0.001449 ± 0.000244	

b	(0.48	µm)	 −0.000968 ± 0.000108	

v	(0.55	µm)	 −0.000814 ± 0.000090	

Na	(0.59	µm)	 −0.000866 ± 0.000154	

w	(0.70	µm)	 −0.000355 ± 0.000112	

x	(0.86	µm)	 0.001771 ± 0.000158	

p	(0.95	µm)	 0.004201 ± 0.000202	

	
Table	3.9.	Sensitivity	dependence	from	ELE	temperature	for	all	band-pass-filters.	The	errors	cited	are	the	2-σ	

errors.	

band	 ∆R$R,[[/℃]	

ul	(0.40	µm)	 	 −0.00077 ± 0.00084	

b	(0.48	µm)	 −0.00055 ± 0.0078	

v	(0.55	µm)	 −0.00085 ± 0.0072	

Na	(0.59	µm)	 −0.00049 ± 0.00058	

w	(0.70	µm)	 −0.00118 ± 0.00034	

x	(0.86	µm)	 −0.00113 ± 0.00086	
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p	(0.95	µm)	 −0.00288 ± 0.00094	

	

3.9.3	Sensitivity	Prediction	Based	on	the	Hardware	Specifications	

The	DN	derived	from	the	ONC-T	CCD	can	be	modeled	by	using	the	hardware	component	specifications,	such	

as	the	CCD	quantum	efficiency,	filter	and	lens	transmittances.	Such	model	equations	for	the	ONC-W1	and	-W2	are	

described	in	Eqs.	(2)–(4)	of	Suzuki	et	al.	(2018).	In	this	section,	we	quantify	the	ONC-T	sensitivity	based	on	the	

specifications	of	the	hardware	components.	

	 	 We	formulate	that	the	expected	signal	Isys,n	[DN/s]	from	ONC-T	is	given	by:	

GN¤N,[ =
‹

›fifll
‡ µ·

ûopt
·‚∫

t

‹
o(a)„£ì"(a, ∞, ó, ‰)a	Φ’0a,OÆÆì,O;ra,	 (3.22)	

where	Fopt	 is	 the	 effective	F-number	 of	 the	 optics	 (=	 9.05),	p	 is	 the	 CCD	pixel	 size	 (=1.33×10-5	 [m]),	 J(λ)	 is	 the	

irradiance	of	the	incidence	light	[W/m2/μm]	on	the	observation	target,	RADF(λ,	i,	e,	α)	is	the	radiance	factor	I/F	

(dimension-less)	of	the	observation	target	at	a	specific	set	of	illumination	and	viewing	angle	geometries	(i,	e,	α	;	

incidence	 angle,	 emission	 angle,	 phase	 angle).	 The	 two	 π	 symbols	 are	 not	 canceled	 in	 this	 equation	 to	 avoid	

confusion	about	the	physical	units,	since	the	latter	π	has	a	unit	of	[sr].	

	

On	the	other	hand,	the	model	radiance	Jn	for	the	n-band	can	be	formulate	as	follows:	

o[ =
∫
a
Â
e(d)Ê_Qû(d,L,s,Á)	Φ’0a,OÆÆì,O;gd

∫ a	Φ’0a,OÆÆì,O;gd
.	 (3.23)	

From	Eqs.	(3.22)	and	(3.23),	the	predicted	model	sensitivity	Ssys,n	can	then	be	described	as	

\N¤N,[ = GN¤N,[/o[	 .	 (3.24)	

Table	3.11	shows	the	values	of	the	predicted	model	sensitivity	derived	from	Eq.	(3.24).	To	derive	these	values,	we	

assume	the	solar	irradiance	spectra	(ASTM-E490)	for	J(λ),	a	flat	I/F	spectra	RADF(λ,	i,	e,	α)	equal	to	1	and	the	CCD	

Temperature	TCCD,T	equal	to	-30	[℃].	 	

	

3.9.4	Sensitivity	Calibration	Based	on	Star	Observations	

Ambiguities	between	the	preflight	CCD	sensitivity	(measured	in	the	laboratory	by	Kameda	et	al.	(2017))	and	

the	inflight	CCD	sensitivity,	due	to	temperature	differences	between	preflight	and	inflight	measurements,	prompted	

further	CCD	sensitivity	characterizations	under	inflight	temperature	conditions.	To	measure	the	absolute	sensitivity	

inflight,	we	observed	eight	stars,	with	V-magnitude	ranging	from	2.02	to	4.73,	during	the	cruise	phase.	The	observed	

targets	are	summarized	in	Table	3.10.	Those	stars	were	selected	based	on	spacecraft	attitude	constraints.	The	

sensitivity	can	be	obtained	from	the	linear	relationship	between	the	photon	flux	and	the	digital	count	observed	

within	each	filter.	For	the	reference	star	spectra,	we	used	catalogs	by	Hamuy	et	al.	(1992,	1994),	Alekseeva	et	al.	

(1996),	and	Burnashev	(1996)	since	we	could	not	find	a	single	catalog	that	included	all	our	observable	stars.	μAqr,	
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φSgr,	and	τ	Sgr	have	not	been	observed	in	wavelengths	longer	than	750	nm,	thus,	the	sensitivities	of	x-	and	p-filters	

are	constrained	with	measurements	from	only	five	stars.	

Although	 these	 different	 catalogs	 used	 the	 same	 calibration	 target	 α	 Lyr	 (Vega),	 they	 used	 a	 different	

reference	 spectrum	 for	 α	 Lyr,	 which	 contributes	 non-negligible	 systematic	 errors.	 Thus,	 we	 first	 derive	 the	

conversion	 factors	 to	 cancel	 the	 systematic	 errors	 caused	 by	 the	 reference	 spectrum	 differences.	 Using	 these	

conversion	factors,	the	star	energy	flux	by	Alekseeva	et	al.	(1996)	were	modified	to	be	consistent	with	that	of	Hamuy	

et	al.	(1992,	1994)	in	all	filters	other	than	the	p-filter.	Note	that	we	use	the	original	flux	values	for	the	p-filter	from	

all	catalogs	since	the	p-filter	band	pass	partly	contains	the	telluric	water	feature	between	930	–	970	nm,	causing	

particularly	higher	spectral	errors	as	discussed	in	Hamuy	et	al.	(1992,	1994).	Burnashev	(1996)	used	the	same	

reference	spectrum	of	α	Lyr	as	Hamuy	et	al.	(1992,	1994)	and	therefore	the	stellar	spectra	from	this	catalog	did	not	

require	re-standardization	to	a	common	reference	spectrum.	Using	these	spectra,	the	expected	flux	Jstar,	n	through	

each	of	the	filters	is	obtained	by	using	Eq.	(3.9).	The	digital	counts	from	the	star	observations	obtained	by	ONC-T	

are	calculated	as	described	in	Sec.	3.8.	The	range	of	sensitivities	derived	from	the	star	observations	correlate	to	

within	 5%,	 except	 for	 ul-	 and	 p-bands	 (Fig.	 3.33).	Note	 that	 random	 scatter	 between	 the	 stars	 from	different	

catalogs	suggests	that	the	systematic	error	between	the	catalogs	has	been	properly	removed.	Figure	3.34	displays	

the	relationship	between	the	star	fluxes	and	digital	counts.	The	sensitivities	for	the	filters	were	obtained	using	a	

weighted	least	square	linear	regression	fit	of	the	5	or	8	points	listed	in	Table	3.11.	The	errors	are	derived	based	on	

the	 95%	 confidence	 level.	 These	 deviations	 are	 consistent	 within	 the	 errors	 in	 the	 star	 observations	 of	 ~1%	

(average)	given	by	Hamuy	et	al.	(1992,	1994)	and	<3%	(90%	confidence	level)	for	the	b-	to	x-bands	by	Alekseeva	

et	al.	(1996).	The	large	deviation	in	the	p-filter	sensitivity	may	be	due	to	the	lower	accuracy	of	reference	spectra,	

which	has	5	–	10%	error	in	the	Hamuy	et	al.	(1992,	1994)	and	<5%	error	in	the	Alekseeva	(1996)	spectra.	

For	comparison,	the	sensitivity	based	on	the	hardware	specifications	from	Sec.	3.9.3	is	shown	also	in	Table	

3.10.	Even	though	there	are	absolute	differences	between	the	two	sensitivities,	on	the	order	of	~17%,	the	relative	

sensitivities	between	the	different	filters	are	consistent	except	for	the	p-filter	(Fig.	3.35).	The	absolute	sensitivity	

difference	between	the	hardware	specification	and	star	calibration	measurements	can	be	ascribed	to	some	flux	loss	

in	the	optics,	but	the	consistency	in	the	relative	values	indicate	that	the	transmittances	for	the	filters	were	well	

defined	preflight.	This	comparison	also	suggests	another	radiometric	calibration	is	needed	for	the	p-filter.	In	the	

next	 section,	 we	 update	 the	 p-filter	 sensitivity	 based	 on	 ONC	 lunar	 observations.	 We	 conclude	 that	 the	 CCD	

sensitivity	derived	from	the	star	observations	is	consistent	with	the	prediction	from	hardware	specifications	except	

for	the	p-filter.	

	

Table	3.10.	List	of	observed	stars	during	the	cruise	phase.	

	 HR	No.	 Observed	

Date	

V	maga)	 Spectral	

Typea)	

Filters	 Reference	spectra	
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Figure	 3.36	 shows	 the	 comparison	 between	 spectra	 obtained	 by	 the	 ONC-T	 on	 5	 December	 2015	 with	

SP/SELENE	(Kouyama	et	al.,	2016)	and	WAC/LROC	(Sato	et	al.,	2014)	spectral	models.	Note	that	both	models	are	

calibrated	to	fit	the	Robotic	Lunar	Observatory	(ROLO)	spectral	model	(Kieffer	and	Stone,	2005).	Comparisons	of	

the	absolute	radiance	comparison	show	the	radiance	based	on	the	updated	ONC-T	CCD	sensitivity	exceeds	that	

predicted	 from	 the	 lunar	models.	On	 the	 other	 hand,	 the	 relative	 spectral	 radiance	 is	 consistent	 (within	 2.5%)	

between	the	models	and	the	ONC-T	observations	The	ROLO	model	has	been	shown	to	have	a	5-10%	uncertainty	

in	its	absolute	value	determination,	whereas	the	relative	spectral	uncertainty	is	on	the	order	of	less	than	3%.	

The	relative	uncertainty	is	based	on	the	ROLO	model	comparison	with	lunar	brightness	measurements	taken	

with	 Moderate	 Resolution	 Imaging	 Spectroradiometer,	 which	 is	 a	 well	 calibrated	 Earth	 observing	 sensor	

onboard	Aqua	and	Terra	(Stone,	2008).	Thus,	the	updated	sensitivity	reproduces	the	lunar	radiance	spectrum	to	

within	the	ambiguity	in	the	models.	Nevertheless,	we	can	update	the	sensitivity	conversion	of	the	p-filter	based	on	

the	lunar	observations	since	the	lunar	reference	models	are	more	accurate	than	the	stellar	observations	at	this	

wavelength.	The	sensitivity	derived	from	the	lunar	observations	for	the	p-filter’s	normalized	radiances	are	identical	

in	 both	 the	 SP/SELENE	model	 and	 the	ONC-T	measurement.	The	 sensitivity	 for	 the	 p-filter	 based	 on	 the	 lunar	

observations	 is	 961.2±28.8	 (DN/s)/(W/m2/µm/sr).	 This	 value	will	 be	 used	 for	 product	 generation	 during	 the	

mission’s	rendezvous	phase.	

Figure	3.37	displays	the	normalized	radiance	spectra	of	Jupiter	and	Saturn	at	TCCD,T=-29	to	-27	℃	compared	to	

ground-based	 observations	 in	 1995	by	Karkoschka	 (1998).	 Karkoschka	 (1998)	 observed	 Jupiter	 and	 Saturn	 at	

phase	angles	of	6.8˚	and	5.7˚,	respectively,	while	the	ONC-T	observed	these	objects	at	3.9˚	and	4.9˚,	respectively.	The	

Jupiter	spectrum	obtained	by	the	ONC-T	shows	overlap	with	the	ground-based	observation	which	has	~4%	of	error.	

Moreover,	although	the	sensitivity	based	on	the	stellar	observation	can	reproduce	the	radiance	spectrum	to	within	

the	ambiguity	in	the	observation,	the	spectra	reproduced	by	the	sensitivity	based	on	the	lunar	observations	shows	

better	consistency	with	the	Jupiter	ground-based	observation.	However,	the	Saturn	spectra	acquired	by	the	ONC-T	

shows	 non-negligible	 differences	 between	 the	 x-band	 observations	 and	 the	 ground-based	 measurements	 by	

Karkoschka	 (1998).	 Because	 the	 x-band	 wavelength	 coincides	 with	 a	 known	 methane	 absorption,	 a	 higher	

reflectance	from	the	rings	compared	with	Saturn’s	disk	(e.g.,	Irvine,	1971)	is	expected.	Depending	on	the	area	ratio	

of	the	rings	relative	to	the	disk	in	the	ONC-T	images,	the	x-band	could	be	brighter	than	the	disk-only	spectra	of	

Karkoschka	 (1998).	 This	 explains	 the	 variations	 between	 the	 ONC-T	 x-band	 and	 the	 ground-based	 Saturn	

observations.	Moreover,	the	bluer	spectral	properties	of	the	rings	may	also	explain	the	darker	brightness	seen	in	

the	ul-band	compared	 to	 the	ground-based	measurements.	These	spectral	comparisons	reasonably	confirm	 the	

ONC-T’s	spectral	calibration.	
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4.	Evaluation	of	the	Upper	Limit	of	a	Detectable	Sodium	Atmosphere	

Sodium	(Na)	is	one	of	the	most	common	elemental	species	surrounding	solar	system	bodies,	due	to	its	

high	abundance	and	volatility.	For	example,	sodium	was	the	first	metallic	component	detected	around	Mercury	

by	ground-based	telescopes	(Potter	and	Morgan,	1985).	Sodium	was	also	detected	around	the	Moon	(~5kR)	

and	comets	(1kR~900MR	depending	on	its	distance	to	Sun)	through	remote	observation	using	the	resonant	

scattering	of	solar	light	at	the	sodium	emission	wavelengths	of	589.594	nm	(D1)	and	588.997	nm	(D2)	(Rahe	

et	al.,	1976;	Potter	and	Morgan,	1988;	Leblanc	et	al.,	2008).	Sodium,	if	present	around	Ryugu,	is	expected	to	be	

observable	by	the	ONC	using	the	Na-band	filter.	The	density	distribution	and	its	seasonal	variation	as	a	function	

of	phase	angle	or	orbital	position	(season)	is	an	important	variable	in	understanding	the	formation	of	C-type	

asteroids	and	the	generation	processes	of	planetary	atmospheres.	This	section	evaluates	the	upper	limit	for	

the	detection	of	sodium	by	the	ONC-T,	based	on	its	observations	of	Jupiter’s	sodium	nebula.	 	

Method	outline	

The	sodium	emission	can	be	detected	with	the	Na-band	filter	on	ONC-T.	In	order	to	eliminate	the	stray	

light	effect	and	fluctuations	in	background	noise,	an	image	taken	concurrently	with	the	v-band	filter	should	be	

subtracted	 from	 the	 Na-band	 image.	 This	 eliminates	 the	 stray	 light	 component,	 as	 its	 contribution	 is	

independent	of	 the	observing	 filter.	Therefore,	 the	sodium	observation	sequence	 includes	the	 images	taken	

alternately	between	the	Na-	and	v-band	filters.	In	addition,	the	background	noise	can	be	eliminated	by	taking	

the	ratio	of	background	count	(CNa/v)	 images	of	“sky-data”	 taken	 in	both	the	Na-band	and	v-band,	acquired	

between	the	Na-	(INa(H,	V))	and	v-band	(Iv(H,	V))	images	of	the	target.	Then,	the	reduced	Na-band	image	of	the	

target	is	calculated	as	follow:	

	 Target(H,	V)	=	INa(H,	V)	–	Iv(H,	V)	×	CNa/v	 (4.1)	

Data	reduction	

It	is	known	that	Jupiter	is	surrounded	by	sodium	torus	originating	from	its	moon	Io.	The	brightness	of	the	

D1	and	D2	lines	from	this	sodium	torus	are	observed	to	be	20-80	R	(e.g.	Yoneda	et	al.,	2015).	During	18	to	20	

May	2017,	ONC	set	its	target	for	the	west	side	of	Jupiter’s	sodium	torus	and	acquired	183	sets	of	images	(Na-	

and	 v-bands)	 continuously.	 Each	 image	was	 taken	with	 a	 178	 s	 integration	 time	 period.	 The	 geometrical	

configuration	of	the	observations	is	shown	in	Fig.	4.1.	Even	though	we	did	not	detect	significant	counts	from	

sodium	around	Jupiter,	the	upper	limit	evaluation	can	still	be	derived	using	this	data	set.	

Upper	limit	for	Na	detection	

As	a	first	step,	we	identify	and	remove	any	hot	pixels	using	the	“dark	image”	derived	in	Sec.	3.4.	Any	pixels	

with	high	dark	count� rates	(>1-σ)	are	eliminated	from	the	sodium-detection	processing.	Furthermore,	pixels	

with	 higher	 counts	 (>3-σ)	are	 also	eliminated	 from	 the	processing	 as	possible	 cosmic	 ray	 hits.	 The	 image	

analysis	process	described	in	the	Eq.	(4.1)	is	then	adopted	for	the	183	image	sets.	 	

The	ratio	CNa/v	is	calculated	to	be	0.9961	using	the	median	from	the	processed	sky	images	(Na-	and	v-
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band)	taken	on	28	April	2017.	Nine	ROIs	are	then	defined	as	shown	in	the	Fig.	4.2	for	each	image.	In	order	to	

evaluate	size	effects,	three	types	of	ROIs	(set	A,	B,	and	C)	are	defined.	The	standard	deviation	in	counts	for	each	

pixel	in	the	ROI	is	calculated.	This	value	is	defined	as	the	upper	limit	of	counts	for	sodium	detection	by	the	ONC	

(1-σ).	Integrating	over	the	multiple	images	statistically	reduces	the	upper	limit.	As	a	result,	an	upper	limit	to	

the	Na	brightness	detection,	as	a	function	of	the	number	of	integrated	images,	can	be	calculated	and	is	shown	

in	Fig.4.3.	If	more	than	100	image	sets	are	integrated,	then	the	upper	limit	is	for	sodium	detection	is	around	

100	R.	 In	 this	 calculation	 the	 count-to-brightness	 conversion	 factor	 is	 assumed	 to	 be	 21	R/DN/pix	 (from	

Kameda	et	al.,	2017).	

The	ONC-T	observations	during	18	to	20	May	2017	did	not	detect	a	significant	count	from	sodium	around	

Jupiter.	This	 is	not	 surprising	 since	 the	brightness	of	 the	sodium	cloud	 is	known	to	be	 less	than	80	R	(e.g.	

Yoneda	et	al.,	2015),	which	is	lower	than	the	detection	limit	for	the	ONC-T.	 	

The	brightness	around	Ryugu	is	expected	to	be	10-10s	kR,	although	the	estimation	is	strongly	dependent	

on	the	outgas	rate	assumption	based	on	the	surface	and	the	sodium	g-factor.	When	we	assume	the	outgas	rate	

at	Ryugu	to	be	same	as	Earth’s	moon	or	Mercury,	the	brightness	is	extremely	low	(10-100	R)	which	is	difficult	

to	detect	by	the	ONC-T.	On	the	other	hand,	if	we	assume	the	outgas	rate	to	be	the	brightness	of	several	10s	kR	

which	even	corresponds	to	much	lower	outgas	rate	on	comets,	the	sodium	atmosphere	is	detectable	by	the	

ONC-T	with	a	single	image	set.	It	should	be	noted	that	the	brightness	estimation	also	depends	on	the	orbit	of	

the	asteroid	because	of	the	Doppler	shift	in	the	solar	light	spectrum,	which	is	the	source	of	the	sodium	resonant	

scattering	(Killen	et	al.,	2009).	

	

Figure	 4.1.	 This	 image	 shows	 the	 geometry	 for	 the	 Jupiter’s	 sodium	 cloud	 observations	

during	18	to	20	May	2017	(Na-band	image).	Jupiter	and	its	north	pole	is	indicated	by	the	white	
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5.	Inflight	Calibration	of	the	ONC-W1	and	-W2	

Both	preflight	and	inflight	calibrations	of	the	flat-fields,	PSFs,	sensitivities,	and	stray	light	contributions	

are	summarized	in	this	section	for	the	ONC-W1	and	ONC-W2.	Hayabusa2	proximity	operations,	such	as	touch-

downs,	lander-releasing,	and	gravity	measurements,	will	be	conducted	primarily	with	the	ONC-W1	since	the	

long	focal	length	of	the	ONC-T	will	be	out	of	focus	at	positions	closer	to	the	surface.	During	touch-downs,	ONC-

W1	will	take	sequential	images	up	to	a	spatial	resolution	of	~1.5	mm/pixel.	Thus,	the	calibrations	of	the	ONC-

W1	and	W2	are	as	important	as	the	calibration	of	the	ONC-T.	The	calibrations	conducted	both	pre-flight	and	

inflight	are	summarized	in	Table	5.1.	

	

Table	5.1.	Summary	of	the	data	used	for	the	calibrations	of	the	ONC-W1	and	-W2.	

		 Ground	measurement	 Inflight	measurement	 Inflight	Observation	Date	

Bias	 0-sec	exposures	 0-sec	exposures	 Continuously	during	the	cruise	phase	 	

Dark	current	and	Hot�

pixels	

Thermal	 vacuum	 test	

(variation	 of	 CCD,	 ELE,	

and	AE	temperatures)	

Deep	 sky	 observation	 with	

variation	of	CCD	temperatures	

30	November	2017,	2	December	2017	

Sensitivity	( )	 Integrating	spheres	 Stars	for	ONC-W2	and	Jupiter	for	

ONC-W1	

9	to	15	February	2016,	 	

19	February	to	21	March	2016,	 	

28	June	2016,	30	June	2016,	 	

2	July	2016,	17	October	2017,	 	

30	November	2017	

Flat-Field	 Flat	panel	 Star	 observation	with	 variation	

of	S/C	attitudes	

12	March	2017	

Same	 as	 images	 for	 Sensitivity	

calibration	

Smear	 	 0-sec	exposures	 Earth	for	ONC-W2	 4	December	2015	

Geometric	distortion	 Dotted	 pattern	 (Suzuki	

et	al.,	2018)	

Stars	(Suzuki	et	al.,	2018)	 W1:	19	February	2015	

W2:	12	March	2017	

Alignment	to	the	S/C	 N/A	 Stars	 W1:	19	February	2015	

W2:	11	December	2014	

Sharp	PSFs	 Pinhole	 Stars,	 and	 Mars,	 	 Jupiter,	 and	

Saturn	

31	May	2016,	9	to	15	February	2016,	 	

19	February	to	17	March	2016,	 	

28	June	2016,	30	June	2016,	 	

2	July	2016,	30	June	2017,	 	
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17	October	2017,	30	November	2017	

Stray	lights	 N/A	 Stray	lights	with	variation	of	the	

S/C	attitudes.	

11	December	2014,	 	

19	February	2015,	 	

26	February	2015,	23	June	2015,	 	

12	to	17	October	2015,	 	

9	November	2015,	 	

14	November	2015,	 	

22	December	2015,	 	

9	February	to	17	March	2016,	 	

21	March	2016,	7	June	2016,	 	

28	June	to	23	July	2016,	 	

12	March	2017,	13	to	20	June	2017,	 	

17	to	21	October	2017	

	

5.1	Bias	Correction	

	 	 	 We	evaluated	the	bias	 level	of	 the	ONC-W1	and	-W2	as	 functions	of	CCD	and	ONC-AE	temperatures.	We	

analyzed	0-second	exposure	images	taken	during	preflight	thermal	vacuum	tests	and	the	cruise	phase.	Most	

of	the	data	acquired	during	the	cruise	were	taken	at	the	nominal	CCD	temperature	(-25℃),	but	at	the	end	of	

2017’s,	 we	 also	 acquired	 0-sec	 exposure	 images	 at	 a	 CCD	 temperature	 of	 +20℃ 	 to	 test	 the	 temperature	

dependency.	Figure	5.1	shows	the	bias	level	(the	average	for	all	pixels)	of	the	ONC-W1	and	W2	as	functions	of	

the	CCD	and	ONC-AE	temperatures.	The	bias	level	obtained	during	the	inflight	observations	increased	with	

CCD	temperature,	similar	to	the	inflight	observation	results	for	ONC-T	(Fig.	3.3)	and	preflight	tests	for	ONC-

W1	and	-W2.	The	bias	level	can	be	empirically	described	as	a	function	of	the	CCD	temperature,	 OPPQ,(Ët	öw	Ëu)	

(℃),	and	AE	temperature,	 O_R 	 (℃)	using	the	relation:	

GKLMN = (∆É + ∆tO_R + ∆uO_R
u )OPPQ,(Ët	öw	Ëu) + (ÈÉ + ÈtO_R + ÈuO_R

u ).	 	 	 	 	 (5.1)	

Optimized	values	of	the	six	coefficients	in	this	equation	are	listed	in	Table	5.2.	Figure	5.2	shows	comparisons	

between	this	empirical	relationship	and	the	actual	bias	measurements.	We	can	predict	the	bias	level	from	Eq.	

(5.1)	within	10%	error.	Note	that	as	was	discussed	in	Sec.	3.2	for	the	ONC-T,	the	bias	level	may	also	depend	on	

the	temperature	of	the	ELE	of	the	ONC-W1	and	-W2.	When	the	ELE	temperature	changes	drastically	during	

proximity	observations,	the	error	might	be	greater	and	need	to	be	corrected	for	by	deductive	methods	based	

on	the	ONC-T.	

	 	 	 Figure	5.3	shows	time-dependent	change	of	the	bias	level	at	CCD	temperatures	around	-25	℃	 using	the	

inflight	data	acquired	after	launch.	We	found	that	the	bias	levels	for	both	cameras	stay	nearly	constant,	within	

1%	change	over	3	years,	similarly	to	the	ONC-T’s	bias	level	(Fig.	3.5).	
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Figure	5.1.	Bias	levels	for	the	ONC-W1	(left)	and	the	ONC-W2	(right)	as	a	function	of	the	CCD	temperature.	

	

Figure	5.2.	Comparisons	 between	 the	actual	 bias	measurements	and	 those	predicted	 from	Eq.	 (5.1).	 Left	

figure	is	for	the	ONC-W1and	right	for	the	ONC-W2.	
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Figure	5.3.	The	time-dependent	change	in	the	bias	level	of	the	ONC-W1	and	ONC-W2.	 	

	

Table	5.2.	Coefficients	for	Eq.	(5.1)	for	the	ONC-W1	and	ONC-W2.	

	 ONC-W1	 ONC-W2	

∆É	 0.680	 0.573	

∆t	 −5.74 × 10,ú	 −2.95 × 10,ú	

∆u	 1.06 × 10,›	 8.92 × 10,≠	

ÈÉ	 260	 288	

Èt	 −1.72	 −1.65	

Èu	 8.50 × 10,ú	 6.29 × 10,ú	

	

5.2.	Dark	Current	and	Hot-Pixel	Correction	

	 	 	 On	30	November	and	2	December	2017,	we	conducted	deep	space	observations	using	the	ONC-W1	and	-

W2	in	order	to	evaluate	their	dark	current	levels.	Two	different	CCD	temperatures,	 −25℃	 and	 +20℃,	 were	

used	for	both	cameras	during	these	observations.	We	took	4-image	sets	with	exposure	times	of	5.57	sec	at	both	

CCD	 temperatures	 for	 ONC-W1,	 and	 44.56	 sec	 at	 O»»j,Íu = −25℃ 	 and	 16.8	 sec	 at	 O»»j,Íu = +20℃ 	 for	

ONC-W2.	A	few	0-sec	exposure	images	were	also	obtained,	which	were	used	to	analyze	the	bias	levels	(see	Sec.	

5.1).	Bright	spots	due	to	cosmic	rays	were	removed	by	taking	a	median	of	the	4	images,	and	the	bias	level	was	

removed	 by	 subtracting	 the	 0-sec	 exposure	 images.	 Signals	 due	 to	 stars	 were	 omitted	 by	 comparing	 two	

median	images	taken	from	the	different	two	days.	Unfortunately,	we	cannot	distinguish	stray	light	and	dark	

current	 from	 the	 images	 taken	at	 O»»j,(Ít	ÎH	Íu) = −25℃.	Thus,	we	estimated	an	upper	 limit	 for	 the	dark	

current	using	a	section	of	the	median	image,	where	the	effects	of	the	stray	light	appear	to	be	small	(rectangle	

area	{[200,	200];	[800,600]}	pixels	on	ONC-W1	images,	and	{[100,	100];	[900,900]}	pixels	on	ONC-W2	images).	

At	 O»»j,(Ít	ÎH	Íu) = +20℃,	we	evaluated	the	dark	current	on	the	entire	images	by	subtracting	the	stray-light	

components	estimated	from	the	images	at	 O»»j,(Ít	ÎH	Íu) = −25℃.	

	 	 	 Figure	5.4	(a)	shows	a	histogram	of	the	dark	current	for	the	ONC-W1	at	 O»»j,Ít = −25℃	 and	 +20℃.	

The	averages	and	the	standard	deviations	are	shown	in	Fig.	5.4	(b),	as	functions	of	the	CCD	temperature.	We	

define	hot	pixels	as	pixels	where	the	dark	current	is	larger	than	30	DN/s.	Figure	5.4	(c)	shows	the	number	

ratio	of	hot	pixels	to	total	pixels	in	the	analyzed	area	of	the	image.	We	confirmed	one	of	the	pixels	are	greater	

than	30	DN/s	at	 O»»j,Ít = −25℃.	Similar	data	for	the	ONC-W2	are	shown	in	Fig.	5.5.	We	confirmed	three	of	

the	 pixels	 are	 greater	 than	 30	 DN/s	 at	 O»»j,Íu = −25℃ .	 The	 hot	 pixel	 ratio	 of	 the	 ONC-W1	 at	 the	 CCD	

temperature	of	 +20℃	 seems	to	be	less	than	that	of	the	ONC-W2,	and	comparable	with	that	of	the	ONC-T	(Fig.	

3.7).	

	 	 	 We	are	planning	to	observe	the	asteroid	surface	closely	using	the	ONC-W1,	down	to	a	few	meters	altitude	
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Figure	5.6.	Hot	pixel	map	of	(a)	the	ONC-W1	and	(b)	ONC-W2	at	the	CCD	temperature	of	20℃.	The	hot	pixels	

in	this	image	are	defined	as	the	pixels	where	the	dark	current	is	larger	than	100	DN/s.	

	

5.3.	Characterization	of	Stray	Light	in	the	ONC-W1	and	-W2	

Weak	stray	light	seen	in	images	taken	by	the	ONC-W1	and	-W2	were	observed	during	the	cruise	phase.	

Similar	to	the	tests	with	the	ONC-T,	we	have	taken	images	under	a	variety	of	spacecraft	attitudes	with	respect	

to	the	Sun	in	order	to	examine	the	patterns	and	the	intensity	of	the	stray	light.	We	found	that	the	pattern	and	

intensity	of	stray	light	in	the	ONC-W1	and	-W2	depends	on	spacecraft	attitude	in	a	similar	fashion	as	seen	in	

the	ONC-T.	

Figure	5.7	shows	the	typical	patterns	of	stray	light	observed	in	the	ONC-W1.	Stray	light	in	the	ONC-W1	

have	a	spotlight-like	pattern,	unlike	the	gradual	intensity	change	in	the	FOV	of	the	ONC-T.	As	the	phase	angle	

increases	(XPNL),	the	observed	stray	light	also	increases.	The	intensity	of	the	stray	light	is	evaluated	using	the	

median	of	an	11x11	pixel	box	in	the	spotlight-like	zone	in	order	to	remove	the	effects	due	to	cosmic	rays	and	

stars.	Because	optimal	exposure	times	for	the	ONC-W1	during	Ryugu	observations	will	be	<50	ms,	stray	light	

darker	than	20	DN/s	cannot	be	detected.	The	area	affected	by	stray	light	is	defined	as	the	region	in	the	FOV	

with	greater	than	20	DN/s	in	the	image.	Figure	5.8	displays	the	relationship	between	the	intensity,	the	area	

affected	by	stray	light,	and	the	spacecraft	attitude.	The	spacecraft	attitude	is	defined	in	the	same	manner	as	in	

the	ONC-T	discussion.	Except	for	one	attitude,	the	stray	light	was	weaker	than	30	DN/s,	which	will	result	in	a	

1.5	DN	for	50-ms	exposures.	As	seen	in	the	ONC-T,	the	spot-like	stray	light	is	smaller	and	weaker	at	larger	 Ïùn$ .	

Moreover,	the	intensity	of	the	stray	light	is	usually	weaker	for	the	ONC-W1	than	the	ONC-T	at	 Ìùn$ < 50°	 and	

is	negligible	when	the	stray	light	for	the	ONC-T	are	avoided	by	twisting	the	spacecraft	around	the	 ÓFP 	 axis.	




6�1055���52����364�
�

���

Figure	5.9	shows	the	typical	patterns	of	stray	light	observed	by	the	ONC-W2.	Stray	light	in	the	ONC-W2	

changes	gradually	in	FOV.	Note	that	bright	parts	are	seen	at	the	upper	and	lower	right	corners	of	the	ONC-W2	

FOV.	They	are	 the	parts	of	 the	 frame	of	 the	ONC-W2	reflecting	the	 light	 source.	We	evaluated	 the	average	

intensity	of	stray	light	for	the	ONC-W2,	excluding	the	frame	parts	(red	square	in	Fig.	5.9).	Figure	5.10	displays	

the	relationship	of	the	intensity	of	the	stray	light	and	the	spacecraft	attitude.	Optimal	exposure	times	for	the	

ONC-W2	observations	of	Ryugu	is	estimated	to	be	<20	ms,	shorter	than	for	the	ONC-W1.	Thus,	the	stray	light	

<50	DN/s	will	not	be	detected	 in	 such	Ryugu	 images.	The	ONC-W2	 is	 found	not	to	have	 severe	stray	 light	

contributions	when	 Ìùn$ > 0°,	 the	Sun	 light	 illuminates	the	+XSC	plane,	but	stray	light	contributions	occur	

when	the	 -XSC	plane	 is	 illuminated.	During	the	rendezvous-phase	observations,	Sun	 light	will	radiate	on	the	

+XSC	panel	at	the	nominal	attitude.	Thus,	 stray	 light	 in	 the	ONC-W2	 is	expected	to	be	negligible	 in	most	of	

rendezvous-phase	images	of	Ryugu.	

	

Figure	5.7.	Stray	 light	patterns	at	 Ïùn$ = 0°	 with	a	changing	 Ìùn$ = 15°, 30°, and	48°	 (from	left	to	right).	

The	stray	light	is	observed	at	the	lower	left	corners	in	the	images	with	large	 Ìùn$ .	
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Figure	5.10.	The	 intensity	classification	of	 the	ONC-W2	stray	 light.	The	stray	 light	 is	weaker	than	50	DN/s	

(blue	and	green)	and	will	not	be	detected	due	to	short	exposure	time	for	the	ONC-W2,	<20	ms.	

	

5.4.	Flat-field	Correction	

The	 flat-fields	 of	 the	ONC-W1	and	 -W2	were	measured	 by	 using	 the	 portable	 self-emissive	 flat	panel	

(CABIN	CL-5300L),	which	was	also	used	to	measure	the	 flat-field	of	ONC-T	prior	to	 launch	 in	Tanegashima	

(launch	site)	(see	Suzuki	et	al.,	2018).	In	this	section,	first,	we	evaluate	the	uniformity	in	reflectance	of	the	flat	

panel	used	for	the	preflight	measurement.	Then,	the	effect	of	emission	angle	(e)	from	the	flat	panel	is	discussed	

and	the	emission	angle	effect-corrected	flat	fields	of	the	ONC-W1	and	-W2	are	shown.	 	

	

5.4.1	Flat-Fields	Based	on	the	Preflight	Calibration	Data	

Figure	 5.11	 shows	 the	 radiance	 distribution	 of	 the	 panel	 taken	 by	 the	 calibration	 camera	 (Orion	

StarShoot	G3	(Monochrome))	when	the	emission	angle	is	set	to	be	zero	to	show	the	reflectance	uniformity	of	

the	flat	panel	calibration	source.	An	edge	of	luminous	area	with	a	dimension	of	350	x	280	mm	is	clearly	seen	

in	the	left	figure.	The	ONC-W1	and	-W2	took	images	of	this	panel	from	a	30	cm	distance	during	the	preflight	

calibration	measurements.	The	approximate	FOV	of	the	ONC-W1	and	-W2,	during	the	calibration,	are	shown	

by	the	area	enclosed	by	white	rectangles	in	the	figure.	Since	the	reflectance	uniformity	of	the	panel	within	this	

area	is	essential	for	a	flat	field	evaluation	of	the	ONC,	the	color	scale	in	both	figures	shows	values	normalized	

by	 the	mean	 radiance	within	 this	 area.	Figure	 5.11(b)	 is	 the	 same	 as	 Fig.	 5.11(a)	 but	 the	 color	 scale	 is	

expanded	 to	 enhance	 the	 reflectance	 uniformity	 of	 the	 panel	 within	 FOV.	 The	 standard	 deviation	 of	 the	

radiance	within	the	FOV	is	measured	by	the	calibration	camera	to	be	1.7%.	Unlike	the	ONC-T,	an	emission	angle	

dependence	of	the	irradiance	from	the	panel	needs	to	be	taken	into	account	since	the	ONC-W1	and	-W2	have	

wider	 FOVs.	 Since	 the	 flat	 plane	 is	 a	 self-emitting	 luminous	 plane,	 only	 the	 emission	 angle	 should	 be	 of	
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concerned	 in	 this	 experiment.	Figure	5.12	 shows	 the	 configuration	 for	 the	measurements	of	 the	emission	

angle	dependence	of	the	radiance	properties	of	the	panel.	In	this	measurement,	the	radiances	from	the	panel	

were	measured	by	a	calibration	camera	at	e	=	0˚,	10˚,	20˚,	30˚,	and	35˚.	Figure	5.13	shows	the	emission	angle	

dependence	of	the	radiance	measured	by	the	calibration	camera.	The	radiance	is	defined	as	the	mean	counts	

within	the	area	of	FOV	(enclosed	by	white	rectangle	in	Fig.	5.11)	normalized	by	the	equivalent	value	at	e=0˚.	

This	shows	that	the	radiance	of	the	panel	gradually	decreases	as	emission	angle	increases.	For	example,	the	

radiance	is	14%	darker	at	e	=	35˚	which	corresponds	to	the	edge	of	the	FOV	of	the	ONC-W1.	Due	to	this	range	

in	emission	angle	across	the	ONC-W1	and	–W2	FOV,	a	single	raw	image	of	the	flat	panel	taken	at	e=0˚	by	the	

ONC-W1	or	-W2	cannot	be	used	as	a	flat	field	image,	unlike	the	case	of	the	narrow	angle	FOV	ONC-T.	Thus,	a	

correction	to	account	for	this	effect	is	necessary	to	acquire	the	actual	flat	field	data	for	the	ONC-W1	and	-W2	

from	a	single	flat	panel	image.	The	count	distributions	in	the	flat	panel	images	taken	at	e=0˚	by	the	ONC-W1	

and	-W2	contain	both	the	actual	flat	field	specification	of	the	camera	and	the	emission	angle	dependency	of	

radiance	 across	 the	 FOV.	 From	 the	 pre-flight	 measurement,	 we	 calculated	 the	 emission	 angle	 dependent	

radiance	model	by	fitting	the	data	in	Fig.	5.13	(red	line).	An	actual	emission	angle	from	the	center	of	the	FOV	

to	any	pixel	located	in	an	image	can	be	calculated	by	using	the	distortion	coefficients	for	both	cameras	(Suzuki	

et	al.,	2018).	The	raw	counts	in	the	image	of	the	flat	panel	are	then	divided	by	the	normalized	radiance	model	

at	each	angle	shown	in	Fig.	5.13.	By	applying	this	correction	to	the	raw	counts	for	all	the	pixels,	the	actual	

sensitivity	for	the	flat	field	images	for	the	ONC-W1	and	-W2	are	obtained.	Figure	5.14	shows	the	sensitivity	

flat	 fields	 of	 the	 ONC-W1	 and	 -W2	 calculated	 using	 this	 methodology.	 The	 values	 in	 these	 images	 are	

normalized	by	a	mean	value	within	50	pixels	from	the	center	of	the	image	(the	center	area).	The	precision	of	

these	 flat	 fields	 is	defined	by	the	spatial	 inhomogeneity	of	 the	 flat	panel	(~1.7%)	since	a	sensitivity	of	 the	

calibration	camera	was	confirmed	to	be	much	more	stable	than	this	value.	The	absolute	sensitivity	of	the	center	

area	measured	by	using	the	integrating	sphere	is	presented	for	both	wide	angle	cameras	in	Sec.	5.5.	 	
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5.4.2.	Flat-Field	Evaluation	Based	on	Inflight	Star	and	Planet	Observations	

The	validity	of	the	sensitivity	across	the	FOV	of	the	ONC-W1	is	examined	using	35	Jupiter	images	obtained	

from	February	to	March	2016,	approximately	two	years	after	Hayabusa2’s	launch.	In	this	observation	period,	

Jupiter	 is	 located	at	various	positions	within	theONC-W1’s	FOV.	Same	as	described	 in	Sec.	3.6,	we	measure	

Jupiter’s	brightness	by	integrating	the	digital	counts	around	Jupiter	(to	include	brightness	distributed	outside	

the	physical	disk	by	the	PSF).	A	dark	image	for	this	observation	period	is	created	by	averaging	the	35	images	

where	 bright	 spots,	 such	as	 Jupiter,	 bright	 stars,	 and	 counts	 from	 cosmic	 rays	 hits	 are	 excluded.	Flat	 field	

correction	based	on	the	pre-flight	measurements	for	the	ONC-W1	was	not	performed	for	the	Jupiter	images	

due	to	difference	in	the	brightness	dependence	on	the	incident	angle	in	the	optics	between	a	point	light	source	

and	a	surface	light	source,	which	is	significant	at	a	large	incident	angles.	Though	the	Jupiter	observations	may	

not	be	used	for	validating	the	flat	field,	they	can	be	used	to	monitor	the	consistency	in	the	ONC-W1’s	sensitivity	

across	its	FOV.	

Since	 Jupiter’s	brightness	varies	with	phase	angle,	we	perform	a	phase	angle	 correction	based	on	 the	

Jupiter	brightness	measurements	with	the	Cassini/Imaging	Science	Subsystem	(ISS)	(Mayorga,	et	al.,	2016).	

Here,	we	use	the	coefficients	for	the	green-band	of	the	ISS,	which	has	a	similar	wavelength	coverage	as	the	

ONC-W1.	The	possible	error	from	the	phase	angle	correction	is	within	~1%	(Mayorga,	et	al.,	2016).	The	phase	

angle	value	between	the	Sun,	Jupiter	and	the	Hayabusa2	spacecraft	decreased	from	4°	to	2°,	and	then	again	

increased	 to	 4°	 during	 this	 observation	 period.	 Finally,	 we	 corrected	 the	 brightness	 variation	 due	 to	 the	

distance	 between	 the	 Sun	 and	 Jupiter	 and	 between	 Jupiter	 and	 the	 Hayabusa2	 spacecraft.	 After	 these	

corrections,	the	measured	brightness	of	Jupiter	by	the	ONC-W1	is	stable	within	a	standard	deviation	of	1.8%	

(Fig.	 5.15(a))	with	a	weak	 incident	 angle	 dependence	with	 cos0.5i,	where	 i	 is	 the	 incident	 angle.	An	 ideal	

pinhole	optics	has	a	cosi	dependence	for	a	point	light	source.	Note	that	the	CCD	temperature	was	-25.1±0.3℃	

in	 this	 observation	 period,	 and	 the	 sensitivity	 variation	 due	 to	 CCD	 temperature	was	 not	 expected	 to	 be	

significant.	

The	sensitivity	validation	of	the	ONC-W2	was	examined	with	a	series	of	60	star	images	taken	between	

February	2016	and	November	2017.	Only	stars	brighter	than	0.5	V-magnitude	(Achernar,	Canopus,	Procyon,	

Rigel,	Sirius,	and	Alpha	Centauri	A	and	B)	were	used	since	they	provided	larger	DN	signals	than	many	of	the	

hot	pixels	and	cosmic	ray	hits	due	to	long	exposure	time	of	the	ONC-W2	observations.	Figure	5.15(b)	shows	

the	distribution	 in	 the	 sensitivity	deviations	deduced	 from	 the	star	observations,	 in	which	each	 sensitivity	

deviation	is	measured	with	the	same	approach	described	in	Sec.	3.8.	The	standard	deviation	of	the	sensitivity	

in	the	FOV	of	ONC-W2	is	4.4	%,	which	 is	somewhat	 larger	than	those	of	 the	ONC-T	and	ONC-W1.	The	 large	

standard	deviation	could	be	from	the	larger	number	of	hot	pixels	in	ONC-W2,	which	may	occasionally	overlap	

star	locations.	If	the	largest	(15%)	and	the	second	largest	(9%)	deviations	are	excluded	from	the	calculations,	
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sensitivity	of	the	pixels	within	a	50-pixel	radius	from	the	center	of	the	image	can	be	measured.	By	combining	

these	sensitivity	values	and	the	normalized	sensitivity	flat-fields	shown	in	Fig.	5.14,	the	sensitivity	of	all	

pixels	across	the	FOV	can	be	characterized.	Since	the	ONC-W1	and	-W2	are	panchromatic	cameras	with	a	

broad	band	pass,	the	mean	radiance	of	the	integrating	sphere,	 "(F,IWÒÒÒÒÒÒÒÒÒ	 [W/m2/sr/μm]	is	calculated	by	

"(F,IWÒÒÒÒÒÒÒÒÒ =
∫ ûœÚ
Û.Ùı	ˆ<
Û.˜ı	ˆ< (d)	f¯*<(d)	Sd

∫ f¯*<
Û.Ùı	ˆ<
Û.˜ı	ˆ< 	(d)	Sd

,	 	 	 	 	 (cam=W1	 or	 W2)	 	 	 	 	 	 	 	 	 (5.2)	

where	 "(F(a)	 is	the	known	spectral	radiance	profile	of	the	integrating	sphere	(see	Fig.	7	of	Kameda	et	al.,	

2017)	and	 ΦIW(a)	 is	the	system	efficiency	function	of	the	ONC-W1	or	-W2	(See	Fig.	2	of	Suzuki	et	al.	

2018).	The	current	of	the	integrating	sphere	was	set	to	2.75	A	for	these	measurements.	The	radiometric	

sensitivities,	 \IWÒÒÒÒÒÒ	 [DN/s]/[W/m2/sr/μm],	for	the	center	area	of	the	FOVs	are	obtained	by	

\IWÒÒÒÒÒÒ =
(̅

ûœÚ,¯*<ÒÒÒÒÒÒÒÒÒÒ	 ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (5.3)	

where	 G	̅ is	the	signal	[DN/sec]	averaged	over	pixels	within	a	50-pixel	radius	from	the	center	of	the	image.	

The	 \IWÒÒÒÒÒÒ	 values	obtained	for	the	ONC-W1	and	-W2	are	 1.38 × 10ú 	 and	 3.84 × 10ú	

[DN/s]/[W/m2/sr/μm],	respectively.	It	is	noted	that	these	coefficients	are	reliable	only	when	the	spectral	

radiation	of	an	object	has	a	comparable	color	temperature	with	the	integrating	sphere.	Thus,	the	mean	

radiance	obtained	by	using	these	coefficients	is	reliable	only	within	an	order	of	magnitude	estimation,	in	

general.	The	results	of	this	radiometric	calibration	are	summarized	in	Table	5.3.	

	

5.5.2	Sensitivity	Calibration	Based	on	the	Inflight	Jupiter	and	Star	Observations	

The	sensitivity	of	the	ONC-W1	was	measured	based	on	the	Jupiter	observations,	using	the	same	images	

described	 in	 Sec.	 5.4.2.	 The	 sensitivity	 was	 evaluated	 by	 comparing	 observed	 Jupiter	 digital	 counts	 and	

expected	Jupiter	counts	based	on	the	ONC-W1’s	specification	(Suzuki	et	al.,	2018),	which	was	determined	prior	

to	launch.	We	used	the	Jupiter	images	since	even	bright	stars	(0	V-magnitude)	provide	only	less	than	200	DN	

in	total	signal	in	an	ONC-W1	image.	These	stellar	observations	are	comparable	to	counts	from	hot-pixels	and	

typical	cosmic	ray	hits,	due	to	the	short	exposure	times	of	the	ONC-W1	(up	to	5.57	sec),	while	Jupiter	provides	

more	than	2000	DN	in	total	signal.	

Same	as	with	star	calibrations,	the	digital	counts	expected	from	Jupiter	can	be	calculated	by	using	Eqs.	

(3.18)	and	(3.19).	Unlike	stars,	however,	the	disk-integrated	Jupiter	brightness	observed	by	the	ONC-W1	has	

a	geometrical	dependence	on	the	observation	geometry.	The	expected	irradiance	(W/m2/μm)	from	Jupiter,	FJ,	

can	be	expressed	as	

"e(a) = £e(a, ‰) ė
eÚ(d)

‹
‡
t_˚

QÚ%¸
‚
u

,	 	 (5.4)	

where	α	is	the	phase	angle	at	the	time	of	observation,	AJ(λ,	α)	is	the	disk-equivalent	reflectance	of	Jupiter,	ΩJ	is	
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the	 solid	 angle	 of	 Jupiter	 as	 seen	 from	 the	 Hayabusa2	 spacecraft,	 JS(λ)	 is	 the	 modeled	 solar	 irradiance	

(W/m2/µm)	at	1	AU,	and	DS-J	is	the	distance	between	the	Sun	and	Jupiter	in	AU.	The	disk-equivalent	albedo	is	

calculated	from	

£e(a, ‰) = £e(a, ‰É)
˝(d,Á)

˝(d,ÁÛ)
	 ,	 (5.5)	

where		Ψ(a, ‰)	 represents	the	phase	angle	dependence	of	AJ(λ,	α),	and	α0	is	the	reference	phase	angle.	In	this	

study,	we	used	a	solar	irradiance	model	from	Gueymard	(2004),	the	Jupiter	reflectance	data	from	Karkoschka	

(1998)	taken	in	1995	at	a	phase	angle	of	6.8°	(i.e.,	α0	=	6.8°),	and	the	phase	angle	dependence	for	the	ISS	green-

band	from	Mayorga	et	al	(2016),	as	described	in	Sec.	5.4.	Since	the	apparent	size	of	Jupiter	was	much	smaller	

than	1-pixel	in	the	ONC-W1	FOV,	the	solid	angle	of	Jupiter	in	steradian	is	approximately	

ė = •
w̧ ˇw̧ !
Q¸%"·

	 ,	 (5.6)	

where	rJe	and	rJp	are	the	equatorial	and	polar	radii	of	 Jupiter,	respectively,	and	DJ-H	 is	 the	distance	between	

Jupiter	and	the	Hayabusa2	spacecraft	at	the	time	of	observation.	Both	DS-J	and	DJ-H	were	more	than	5	AU	during	

the	observation	period.	

From	the	16	Jupiter	images	in	which	Jupiter	was	located	near	the	center	of	the	FOV,	where	variations	in	

the	 sensitivity	 are	 not	 significant	 (Sec.	 5.4.2),	 the	 sensitivity	 of	 the	 ONC-W1	 was	 measured	 to	 be	

(1.44 ± 0.02) × 10ú 	 [DN/s]/[W/m2/sr/μm],	which	is	highly	consistent	with	the	sensitivity	measured	prior	to	

launch.	The	error	range	 is	evaluated	from	the	standard	deviation	of	measured	sensitivities	 from	35	Jupiter	

observations.	 It	 should	 be	 noted	 that	 the	 sensitivity	 value	 from	 the	 Jupiter	 observations	 has	 errors	 from	

possible	temporal	variations	in	Jupiter’s	reflectance	(for	example,	a	couple	of	percent	(Karalidi	et	al.,	2015)),	

uncertainties	 in	measuring	 Jupiter’s	 brightness	 in	 the	ONC-W1	 images	 (2%	based	 on	 standard	 deviation),	

errors	in	the	Jupiter	reflectance	(4%	in	absolute	value	by	Karkoschka	(1998)),	and	errors	due	to	the	phase	

angle	dependence	(up	to	1%	by	Mayoruga,	et	al.	(2016)).	In	addition,	Jupiter	and	the	integrating	sphere	we	

used	in	the	pre-flight	measurements	have	different	spectral	profiles.	These	could	provide	differences	between	

the	sensitivities	derived	from	pre-flight	and	inflight	measurements.	

The	sensitivity	of	the	ONC-W2	was	measured	based	on	star	observations	conducted	from	February	2016	

to	November	2017.	Stars	images	used	for	this	measurement	are	same	for	the	evaluation	of	the	ONC-W2	flat-

field	described	 in	Sec.	5.4.	 Comparing	 the	observed	DN	 to	 the	expected	DN	based	on	 star	 irradiances,	 the	

sensitivity	 of	 the	 ONC-W2	 in	 6	 star	 observations	 was	 evaluated	 as	 (4.03 ± 0.07) × 10ú 	

[DN/s]/[W/m2/sr/μm]	 at	 the	 center	 of	 FOV,	 which	 is	 consistent	 with	 the	 sensitivity	 from	 the	 preflight	

measurement.	In	addition,	this	value	corresponds	to	a	47%	lower	sensitivity	than	expected	from	the	ONC-W2	

specification,	which	was	 commensurate	with	 the	 results	 from	 the	 Earth	 observations,	where	 the	ONC-W2	

measured	Earth’s	reflectance	to	be	40%	darker	than	the	reference	value	(Suzuki	et	al.,	2018).	
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It	can	be	concluded	that	both	the	ONC-W1	and	-W2	basically	retained	their	preflight	sensitivities	during	

the	cruise	phase.	Continuous	sensitivity	monitoring	with	bright	targets	will	provide	a	continuing	measure	of	

the	stability	of	the	sensitivity	inflight	for	these	camera	detectors.	

	

Figure	5.16.	An	image	of	the	integrating	sphere	taken	by	the	ONC-W1.	

	

Table	5.3.	Summary	of	 the	 radiometric	 calibration	of	 the	ONC-W1	and	 -W2	based	on	preflight	 integrating	

sphere	measurements	.	

Camera	 Date	 Current	

setting	of	the	

integrating	

sphere.	

\IW	

[DN/s]/[W/m2/μm/sr]	

ONC-W1	 27	March	2014	 2.75	A	 1.38 × 10ú 	

ONC-W2	 27	March	2014	 2.75	A	 3.84 × 10ú 	

	

5.5.3.	Point	Spread	Functions	(PSFs)	

The	 PSF	 of	 the	ONC-W1	 is	 evaluated	 from	 observations	 of	 bright	 targets,	 i.e.	 Mars,	 Jupiter,	 and	 stars	

brighter	than	1	V-magnitude	(Betelgeuse,	Capella,	and	Procyon).	Mars	images	were	taken	on	31	May	2015,	and	

Jupiter	 images	are	the	same	images	used	for	the	 flat-field	and	sensitivity	evaluation.	The	star	 images	were	

taken	on	12	March	2017.	The	PSF	of	the	ONC-W2	was	also	evaluated	from	stars	brighter	than	1	V-magnitude,	

taken	between	February	2016	to	November	2017.	Figure	5.17	shows	a	summary	of	the	FWHM	of	each	bright	

target	 for	 the	ONC-W1	and	-W2.	The	FWHM	values	are	evaluated	 from	a	 two-dimensional	Gaussian	 fitting	

method,	same	as	that	used	for	measuring	the	PSF	of	the	ONC-T	(Suzuki	et	al.,	2018).	Due	to	the	short	exposure	

time	of	the	ONC-W1	(up	to	5.57	sec),	only	a	limited	number	of	star	images	were	used,	while	142	star	samples	

were	available	for	measuring	the	PSF	of	the	ONC-W2,	whose	exposure	time	was	44.56	sec.	
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6.	ONC	System	Alignment	with	the	Spacecraft	

Understanding	the	alignment	of	the	ONC	system	with	respect	to	the	spacecraft	is	essential	for	comparing	

the	measurements	within	the	different	FOVs	or	matching	footprints	with	other	instruments,	such	as	the	TIR	

and	NIRS3,	or	even	when	we	compare	images	taken	from	the	ONC-T	and	ONC-W1.	Moreover,	the	alignment	

information	is	necessary	to	calculate	the	accurate	attitude	and	position	of	the	spacecraft	from	images	during	

operation.	In	this	section,	we	present	the	results	of	measurements	deriving	the	viewing	direction	of	the	ONCs	

relative	to	the	spacecraft	attitude.	As	mentioned	in	Suzuki	et	al.	(2018),	the	FOVs	of	the	ONC-W1	and	ONC-

T	were	designed	to	align	in	the	−ZSC	direction	within	the	spacecraft	coordinate	system,	while	that	of	the	

ONC-W2	was	slanted	by	approximately	30˚	from	the	−ZSC	direction.	However,	actual	alignments	may	have	

small	 offset	 from	 these	designed	values	due	 to	 an	 ineluctable	 error	 in	 assembly	procedures	prior	 to	

launch	or	 offsets	 created	by	 the	 strong	vibrations	during	 launch	of	 the	Hayabusa2	 spacecraft.	 These	

offsets	are	measured	precisely	by	using	star	filed	images	taken	during	the	cruise	phase.	Star	field	images	

used	in	the	determination	and	verification	of	the	distortion	coefficients	(see	Suzuki	et	al.,	2018)	of	the	

three	cameras	are	also	validated	in	this	measurement.	In	Secs.	3	and	6	of	Suzuki	et	al.	(2018),	celestial	

coordinates	were	fitted	to	the	star	field	images	to	verify	the	estimated	distortion	coefficients	(See	Fig.	5	

for	the	ONC-W1	and	-W2,	and	Fig.	12	for	the	ONC-T).	From	these	results,	right	ascension	and	declination	

angles	corresponding	to	the	center	of	the	FOV	at	the	observation	time	for	each	camera	can	be	determined.	

On	the	other	hand,	information	of	the	spacecraft	attitude	at	these	observation	periods	are	also	available	

from	the	telemetry	data.	This	allows	us	to	predict	pointing	directions	and	the	centers	of	the	FOVs	of	three	

cameras	during	the	observation	periods	by	assuming	that	the	cameras	were	perfectly	assembled	to	the	

spacecraft	as	designed.	Thus,	the	offset	values	between	the	predicted	direction	of	an	optical	axis	of	each	

camera	and	that	estimated	from	the	actual	star	image	can	be	defined	as	alignment	information.	Table	6.1	

summarizes	the	observation	dates	and	times	of	the	star	field	images,	the	observed	center	of	the	FOV	in	

the	celestial	coordinate	system,	the	center	of	the	FOV	predicted	by	the	attitude	information,	and	the	offset	

between	them	(i.e.,	the	alignment	information)	in	terms	of	angles	and	in	image	coordinate	(in	pixels).	The	

last	column	of	Table	6.1	gives	the	alignment	information	in	the	image	coordinate	(for	definitions	see	Fig.	

1	of	Suzuki	et	al.,	2018)	defined	as	

Δx = xöKN − 511.5	[pixels]	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (6.1)	
where,	the	 xöKN 	 is	observed	location	of	the	predicted	center	(e.g.,	the	direction	of	−ZSC	for	the	ONC-W1	

and	ONC-T)	and	the	value	511.5	pixels	is	the	location	of	image	center.	We	also	can	express	alignment	by	

Euler	angles	with	respect	to	the	spacecraft	coordinate	system.	The	matrix	transforming	from	the	

spacecraft	coordinate	system	is	

ƒ = %
cosΘ) sinΘ) 0
− sinΘ) cosΘ) 0

0 0 1
*%

cosΘ+ 0 − sinΘ+
0 1 0

sinΘ+ 0 cosΘ+
*%

1 0 0
0 cosΘ, −sinΘ,
0 sinΘ, cosΘ,

*,	 	 	 	 	 	 	 	 	 	 	 (6.3)	
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where	 Θ, ,Θ+ , and	Θ, 	 are	 Euler	 angles	 from	 the	 spacecraft	 coordinate	 system	 to	 the	 instrument	
coordinate	system.	The	Euler	angels	for	ONC	are	also	listed	in	Table	6.1.	

*Suzuki	et	al.	(2018)	

Table	6.1.	Alignment	information	for	the	three	cameras	estimated	by	using	star	field	images.	

	

7.	NIRS3	

Hayabusa2	 payload	 includes	 the	 near	 infrared	 spectrometer	 NIRS3,	 whose	 purpose	 is	 to	 detect	 and	

measure	the	absorption	around	3	µm,	associating	with	the	hydration	of	mineral	species	(Iwata	et	al.,	2017).	

NIRS3	is	designed	to	observe	wavelengths	from	1.8	to	3.2	µm.	It	is	important	to	connect	the	spectra	from	the	

ONC-T	and	NIRS3	instruments	to	measure	the	spectral	characteristics	over	a	broad	range	of	wavelengths,	from	

the	ultraviolet	 (UV)	 through	 the	visible	 (vis)	 to	 the	near	 infrared	 (NIR).	This	will	 allow	us	 to	examine	 the	

mineralogy	of	Ryugu	using	the	integrated	spectra	from	both	instruments.	In	this	section,	we	show	the	ONC-T	

Camer
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and	NIRS3	spectra	of	the	Moon	observed	almost	simultaneously	on	5	December	2015	(Kitazato	et	al.,	2016).	

The	consistency	of	the	spectra	is	discussed	based	on	the	comparisons	with	the	SP/SELENE	model	(Yokota	et	

al.,	2011;	Kouyama	et	al.,	2016)	for	vis-NIR	spectra,	since	there	is	no	overlap	in	the	wavelength	range	between	

the	 two	 instruments.	 In	 this	 comparison,	 we	 used	 a	 modified	 SP/SELENE	 model	 which	 covers	 longer	

wavelengths	(~2	μm)	based	on	the	updated	reflectance	data	by	Yokota	et	al.	(2012)	than	the	model	in	Yokota	

et	al.	(2011)	and	Kouyama	et	al.	(2016).	The	reflectance	spectrum	from	the	SP	model	was	corrected	with	the	

ROLO	reflectance	model	since	the	SP	model	shows	somewhat	darker	and	brightener	tendencies	in	shorter	and	

longer	wavelength	ranges,	respectively	(Ohtake	et	al.,	2013).	

First,	the	alignment	of	the	ONC-T	and	NIRS3	are	calculated	based	on	the	SPICE	Instrument	Kernel.	The	

NIRS3	alignment	has	been	determined	through	scan	observations	of	 the	Earth	combined	with	slews	of	the	

spacecraft	attitude.	The	error	in	alignment	is	within	+/-0.005˚,	corresponding	to	~5%	of	the	size	of	field	of	

view.	Figure	7.1	shows	the	alignment	of	the	NIRS3	in	the	FOV	of	the	ONC-T,	showing	little	offset	from	the	center	

of	the	FOV.	The	footprint	of	the	NIRS3	is	{[	476.5,	454.3];	[492.7,	472.1]}	pixels	in	the	ONC-T	image	coordinate	

system.	NIRS3	only	obtained	spectra	of	part	of	the	Moon’s	surface	due	to	its	narrow	footprint	(Fig.	7.2).	The	

comparisons	of	the	lunar	spectra	from	different	parts	of	the	surface	are	shown	in	Fig.	7.3.	We	also	display	the	

model	spectra	from	SP/SELENE	to	reasonably	extrapolate	the	ONC-T	spectrum	to	the	NIRS3	spectrum.	There	

seems	to	be	little	offset	between	the	spectra	of	the	ONC-T,	NIRS3,	and	model	spectra.	Note	that	the	radiometric	

calibration	of	 the	NIRS3	was	primarily	based	on	preflight	 calibration	 test	data.	The	SP	model	spectra	may	

underestimate	the	radiance	for	large	incidence	angle	regions	as	shown	in	Kouyama	et	al.	(2016),	which	is	of	

importance	since	the	footprints	of	the	NIRS3	are	located	at	higher	latitude	regions	where	the	incident	angle	is	

large.	Thus,	we	shift	the	SP-model	spectra	to	fit	the	ONC-T	v-band	radiance	and	the	NIRS3	spectra	to	fit	the	SP-

model	in	the	range	between	1819	to	2038	nm.	We	calculated	the	offset	factor	between	the	ONC-T	and	NIRS3	

as	0.87	(Fig.	7.4).	Using	this	value,	we	can	evaluate	slope	of	the	intermediate	wavelength	from	0.95	to	1.8	µm.	

This	wavelength	range	was	observed	by	ground-based	telescopes	(Moskovitz	et	al.,2013;	Le	Corre	et	al.,	2017)	

and	is	reflective	of	the	mineralogical	composition	of	the	surface.	Moreover,	there	is	a	significant	difference	in	

the	slopes	in	this	wavelength	range,	which	was	observed	by	Moskovitz	et	al.	(2013)	and	Le	Corre	et	al.	(2017).	

Thus,	we	may	observe	some	heterogeneity	in	the	slope	in	this	wavelength	range	over	the	surface	of	Ryugu.	
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Figure	7.1.	The	footprint	of	the	NIRS3	in	the	FOV	of	the	ONC-T.	

	
Figure	7.2.	Squares	indicate	the	ROIs	of	the	NIRS3	observations	in	an	ONC-T	image	(red	(ROI1):	11:35:14	on	

5	December	2015,	green	(ROI2):	11:42:27	on	5	December	2015,	yellow	(ROI3):	11:45:29	on	5	December	2015).	
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described	in	previous	sections.	

	

8.1.	Signal-to-Noise	Ratio	

The	 signal-to-noise	 ratios	 (SNRs)	 of	 the	 ONC-T,	 -W1,	 and	 -W2	 are	 important	 for	 establishing	 the	

detectability	of	radiance	variation	over	the	asteroid	surface.	The	scientific	quality	of	the	images	is	changed	by	

temperature	conditions.	Unlike	orbiting	missions,	the	Hayabusa2	spacecraft	will	experience	a	large	range	of	

temperatures,	because	the	change	in	the	distance	between	the	spacecraft	and	the	asteroid	includes	radiative	

heat	change	when	at	low	altitudes.	Especially,	during	touchdowns	the	CCD	temperatures	can	be	as	high	as	20	

℃.	Thereby,	understanding	the	effects	of	the	temperature	on	the	detector	performance	is	necessary	in	order	

to	analyze	the	close-approach	images.	Our	calibration	results	show	the	temperature	causes	large	effects	on	

dark	noise.	Here,	we	discuss	the	SNRs	dependence	on	the	CCD	temperature.	

The	total	noise	 ∆G	 can	be	defined	as	the	combination	of	read-out	noise	 ∆Gwö ,	EMI	noise	 ∆GR/( ,	shot	noise	
∆GNfiöA70G[DN] ∙ 3[e, DN⁄ ] 3[e, DN⁄ ]5 	 where	g=20.95	[e-/DN]	is	the	gain	factor,	and	dark	noise	 ∆GgMw} :	

∆G = 0∆Gwöu + ∆GR/(u + ∆GNfiöAu + ∆GgMw}u 	 [DN],	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (8.1)	

where,	only	the	dark	noise	is	a	function	of	time,	but	has	a	negligible	contribution	at	the	reference	temperature	

(-30	 ℃).	Because	the	three	cameras	within	the	ONC	use	the	same	manufactured	CCDs	with	the	almost	same	

characteristics,	the	ONC	cameras	all	image	with	a	SNR~200	at	the	reference	temperature.	However,	once	the	

CCD	temperature	gets	high	as	20	 ℃,	the	dark	noise	contribution	will	dominant	in	the	total	noise	and	yields	a	

SNR~150	for	the	ONC-T	v-band,	while	the	ONC-W1	and	W2	will	be	less	affected	due	to	the	shorter	exposure	

times	during	operation.	These	value	suggest	that	the	variation	across	the	asteroid	surface	over	a	single	image	

can	be	measured	within	errors	of	0.7%	at	the	worst	case.	Moreover,	there	may	be	unavoidable	effect	of	hot	

pixels	(>100	DN/s),	so	that	~1%	of	the	FOV	area	will	not	be	useable.	

	

8.2.	Detectability	of	0.7-µm	Absorption	Band	

One	 of	 the	most	 important	 inquiries	 for	 the	 spectral	mapping	 on	 Ryugu	 is	 the	 determination	 of	 the	

presence	of	hydrated	minerals,	which	are	indicators	of	aqueous	alteration	processes	on	primordial	asteroids.	

Asteroids	are	considered	to	be	a	possible	source	of	water	to	the	inner	Solar	System,	including	our	own	Earth	

(e.g.,	O’Brien	et	al,	2014;	Altwegg	et	al.,	2014).	Moreover,	the	degree	of	aqueous	alteration	also	provides	insight	

into	the	heating	history	of	asteroids.	Here,	we	discuss	the	total	error	revealed	by	the	calibrations,	especially	

sensitivity,	and	their	impact	on	the	possible	detection	of	hydrated	minerals	from	ONC-T	multiband	images.	

Our	target	asteroid	Ryugu	is	categorized	as	a	C-complex	asteroid,	which	are	theorized	to	have	formed	in	

the	 volatile-rich	 region	 in	 the	Solar	 System,	 in	 the	 Bus	 and	Binzel	 taxonomy	 (Bus	and	Binzel,	 2002).	 The	

presence	 of	 hydrated	 minerals	 is	 usually	 discussed	 by	 the	 most	 prominent	 and	 unambiguous	 3-micron	

absorption	(e.g.,	Lebofsky,	1980;	Takir	and	Emery,	2012).	However,	the	3-µm	band	is	difficult	to	observe	on	
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small	asteroids	from	the	Earth.	Thereby,	the	attributed	iron	charge-transfer	0.7-µm	absorption,	which	is	easier	

to	 observe,	 is	 used	 as	 the	 reliable	 proxy	 for	 hydrated	 minerals	 (e.g.,	 Vilas	 et	 al.,	 1994).	 Ground-based	

observations	 have	 established	 the	 correlation	 between	 the	 0.7-	 and	 3-µm	 absorptions	 among	 C-complex	

asteroids	(e.g.,	Howell	et	al.,	2011).	Many	observations	of	Ryugu	have	been	made	to	date	to	obtain	mineralogy	

information	prior	to	Hayabusa2’s	encounter	(Binzel	et	al.,	2001;	Vilas	2008;	Lazzaro	et	al.,	2013;	Moskovitz	et	

al.,	2013;	Sugita	et	al.,	2013;	Perna	et	al.,	2017).	Most	of	these	spectra	display	very	flat	spectral	shapes,	while	

only	 one	 of	 them	 shows	evidence	 of	 a	 0.7-µm	absorption	 (Vilas	et	 al.,	 2008).	 This	 suggests	 there	may	 be	

variations	 in	 the	 composition	across	Ryugu’s	surface	that	are	 characterized	by	 the	presence	or	absence	of	

the0.7-µm	absorption	feature.	Thus,	it	is	important	to	map	out	the	0.7-µm	absorption	by	the	ONC-T	based	on	

v-,	w-,	and	x-band	observations.	The	depth	of	0.7-µm	absorption	can	be	measured	by	

rÉ.6 = 1 −
ú.tÊ7

t.õÊ8zt.≠Ê9
.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (8.2)	

Kameda	et	al.	(2015)	reported	that	the	0.7-µm	absorption	detection	on	CM2	chondrites,	such	as	Murchison	

and	Nagoya,	by	the	flight	model	of	ONC-T.	From	our	updated	sensitivity,	the	ambiguity	in	the	sensitivities	for	

the	 v-,	 w-,	 and	 x-bands	 are	 0.85%,	 1.3%,	 and	 1.6%,	 respectively.	 The	 error	 of	 0.7-µm	 absorption	 depth	 	

calculated	from	error	propagation	of	Eq.	(8.2)	are	1.6%.	Thereby,	the	typical	absorption	of	serpentine	(3-4%)	

can	be	detected	by	a	SNR~2.	This	value	can	be	improved	by	decreasing	the	statistical	errors	based	on	more	

star	observations.	

	

8.3.	UV-Slope	Evaluation	

As	is	noted	above,	most	of	the	ground-based	observations	of	Ryugu	do	not	report	an	absorption	around	

0.7-µm.	 Rivkin	 (2012)	 reported	 that	 one	 third	 of	 C-complex	 asteroids	 in	 Sloan	 Digital	 Sky	 Survey,	 which	

includes	large	number	of	asteroids	down	to	small	objects,	show	the	0.7-µm	feature,	whereas	two	thirds	do	not.	

Moreover,	 the	0.7-µm	 feature	 seen	 in	CM	chondrite	 spectra	easily	disappears	when	dehydrated	by	heating	

(Hiroi	et	al.,	1996)	and	space	weathering	(Matsuoka	et	al.,	2015).	Thus,	there	is	possibility	we	will	not	find	0.7-

µm	feature	on	Ryugu.	However,	this	does	not	indicate	that	there	are	no	hydrated	minerals	on	the	surface.	Other	

than	0.7-µm	absorption	feature,	the	strength	of	UV-absorption	shortward	of	0.55	µm,	which	is	caused	by	Fe2+	

and	Fe3+	in	silicates,	also	correlates	positively	with	the	3-µm	feature	(e.g.,	Freierberg	et	al.,	1985).	Vilas	et	al.	

(1993)	investigated	the	relationship	of	0.7-	and	0.43-µm	absorptions	and	suggested	that	asteroids	with	0.7-

µm	absorption	also	display	the	0.43-µm	absorption.	Moreover,	asteroid	spectra	that	did	not	display	the	0.43-

µm	feature	also	did	not	show	the	0.7-µm	feature.	Thus,	 the	UV	absorption	can	be	also	a	proxy	for	aqueous	

alteration	in	the	ONC-T	wavelength,	such	as	a	spectral	turnover	near	the	v-band.	Thus,	we	can	use	the	UV	to	

blue	 spectral	 slope	 index	 instead	 of	 the	 0.7-µm	 absorption.	 The	UV	 slope	 can	 be	 calculated	 by	 ln(Rul/Rv).	

According	to	Hiroi	et	al.	(1996),	there	are	large	discrepancies	of	this	value	from	-1	to	0	among	C-,	G-,	B-,	and	F-

type	asteroids	in	the	Tholen	taxonomy	(Tholen,	1984),	and	this	value	correlates	nearly	linearly	with	the	3-µm	
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band	absorption.	Although	they	used	0.34	µm	for	the	shorter	wavelength,	ul-band	wavelength	range,	0.4-µm,	

can	serve	as	the	same	proxy.	Based	on	our	sensitivity	ambiguity,	the	error	for	this	value	will	be	~1%	in	the	

center	of	the	FOV.	However,	it	should	be	noted	that	the	spatial	error	could	be	large	because	of	the	deviation	in	

ul-band	flat-field	caused	by	the	round-about	stray	light	on	the	preflight	flat-field	measurement.	For	that	reason,	

the	spatial	uncertainty	of	measuring	the	UV	slope	will	be	dominated	by	 flat-field	uncertainty	of	~4%.	This	

error	estimation	still	suggests	that	we	can	distinguish	unheated	CMs	of	 ln(Rul/Rv)~-0.6	to	-0.3	 from	highly	

dehydrated	(700-1000	 ℃)	CMs	of	~0	quite	easily,	assuming	that	Rul	and	R0.34µm	are	linearly	correlated.	

	

8.4.	First	Inflight	Observation	of	Ryugu	

The	first	inflight	observations	of	Ryugu	were	conducted	on	26	February	2018	when	the	angle	between	

the	Sun-Ryugu-Hayabusa2	was	~1.1-1.6˚.	Taking	advantage	of	 the	 illuminate	condition	close	to	opposition,	

Ryugu	was	apparently	bright	and	we	succeeded	in	observation	with	the	ONC-T	by	longest	exposure	time	(178	

sec).	We	conducted	two	different	observations	for	different	purposes;	1)	light	curve	observation	and	2)	Ryugu	

multi-band	 imaging.	On	the	 lightcurve	observation,	 the	wide-band	was	used	 in	order	to	stack	the	signal	as	

much	 as	 possible.	 On	 the	multi-band	 observation,	 we	 observed	 different	 rotational	 phases.	We	 took	 four	

sequential	image	sets	for	each	band	at	one	rotational	phase.	The	summary	of	observations	are	listed	in	Table	

8.1.	After	dark	and	flat	corrections,	invalid	images,	which	include	cosmic	ray	hits	close	to	Ryugu	due	to	long	

exposures	were	omitted	from	the	analyses.	The	background	noise,	such	as	dark	current	and	hot	pixels,	were	

main	cause	of	errors	in	measurements.	The	lightcurve	is	obtained	by	taking	three	moving	averages	over	time	

(Fig.	8.1).	 	

On	the	multi-band	observations,	the	images	were	acquired	every	¼	rotational	phase	for	7	sets.	Due	to	the	

very	 small	 signals,	we	 employ	 two	 analysis	methods	 to	 obtain	 robust	 results.	One	method	 is	 the	aperture	

analysis,	which	 is	usually	applied	to	star	 flux	analyses	as	discussed	 in	Sec.	3.	Another	method	is	the	rough	

estimation	from	the	peak	signal	of	Ryugu.	More	specifically,	we	obtained	the	relationship	between	the	peak	

signal	and	total	signal	from	star	observations,	in	which	signals	are	much	larger	than	the	background	signals.	

However,	the	signal	ratio	of	peak	to	total	may	change	from	0.15	to	0.33	with	the	Ryugu	detected	area	in	one	

CCD	pixel.	Because	the	signals	of	the	ul-	and	p-bands	are	smaller	than	the	dark	level,	<0.05	DN/s,	the	spectral	

shape	is	discussed	without	these	two	filters.	Figure	8.2	displays	normalized	reflectance	spectra	of	Ryugu	from	

the	two	methods	from	b-	to	x-bands.	We	found	that	this	case	with	very	low	signal	rate,	the	rough	estimate	gives	

smaller	 errors.	 Although,	 the	 shapes	 of	 reflectance	 spectra	 are	 not	 perfectly	 reproducible	 at	 two	 similar	

rotational	phase,	such	as	observation	set	of	2	and	6	in	Fig.	8.2,	the	slope	of	reflectance	spectra	for	all	rotational	

phases	varies	to	 include	0	(flat)	considering	errors	 in	measurements.	Such	flat	spectra	are	consistent	with	

ground-based	observations	(Binzel	et	al.,	2001;	Vilas	2008;Lazzaro	et	al.,	2013;	Moskovitz	et	al.,	2013;	Sugita	

et	al.,	2013;	Perna	et	al.,	2017).	There	may	be	darkening	 in	the	b-band	compared	with	the	v-band	for	most	
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rotational	phases.	Furthermore,	we	compare	the	magnitude	of	the	v-band	observed	with	the	ONC-T	and	the	

corresponding	V-magnitude	of	the	Earth-based	observations	from	Ishiguro	et	al.	(2014).	Because	we	stack	the	

signal	 from	all	 28	 v-band	 images	 to	 reduce	 the	error,	 the	 v-band	magnitude	 here	 corresponds	 to	 a	 global	

average,	or	disk-integrated	value.	Figure	8.3	shows	the	compiled	phase	curve	of	Ryugu,	displaying	consistency	

between	ONC-T	and	Earth-based	measurements,	although	the	error	bar	is	still	large	~10%.	This	result	also	

supports	the	robustness	of	the	calibrations.	

	

Table	8.1.	Summary	of	Ryugu	first	inflight	observations.	

	 Observation	Time	(UTC)	 Number	of	Images	

Lightcurve	observation	(wide-band)	 26	February	2018	03:01	–	10:28	 100	

7-band	observation	(1)	 26	February	2018	10:39	–	12:01	 28	

7-band	observation	(2)	 26	February	2018	12:33	–	13:56	 28	

7-band	observation	(3)	 26	February	2018	14:28	–	15:50	 28	

7-band	observation	(4)	 26	February	2018	16:22	–	17:45	 28	

7-band	observation	(5)	 26	February	2018	18:15	–	19:39	 28	

7-band	observation	(6)	 26	February	2018	20:11	–	21:34	 28	

7-band	observation	(7)	 26	February	2018	22:04	–	23:28	 28	

	

Figure	8.1.	First	 inflight	 lightcurve	observation	of	Ryugu	taken	on	26	February	2018.	Every	point	shows	a	

three	points	moving	average	and	errors	are	evaluated	by	the	deviation	between	three	points.	Due	to	the	change	

in	distance	between	the	spacecraft	and	Ryugu,	the	signals	are	normalized	by	the	square	of	the	distance.	
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The	empirical	linearity	correction	model	corrects	the	linearity	to	<0.1%.	

l Flatness	of	 the	 flat-fields	 for	v-band	and	ul-band	 is	evaluated	based	on	star	observations	with	slightly	

different	attitudes.	The	sensitivity	variations	in	the	v-band	flat-field	and	the	ul-band	flat-field	are	about	

2%	and	4%,	respectively.	The	ul-band	flat-field	discrepancy	is	larger	than	the	v-band	because	the	round-

about	stray	light	might	contaminate	and	make	little	gradation	in	the	FOV	during	preflight	tests.	

l Scattered	 light	 in	 the	optics	are	characterized	and	the	PSF	models	are	derived	for	all	color	 filters.	The	

effect	of	a	broad	PSF	in	the	ONC-T	is	smaller	than	that	on	the	AMICA/Hayabusa.	The	effect	can	be	corrected	

in	a	way	similar	to	that	described	by	Ishiguro	(2014).	

l The	ghost	effect	was	observed	and	is	most	apparent	in	the	p-filter,	with	a	signal	as	much	as	0.65%	the	

intensity	of	the	object	observed.	

l Suzuki	et	al.	(2018)	reported	the	radiator	stray	light	dependence	on	spacecraft	attitude	with	respect	to	

the	Sun.	The	radiator	stray	light	has	been	intensively	observed	during	the	cruise	phase.	The	attitudes	with	

negligible	stray	light	were	found	and	reported	in	Suzuki	et	al.	(2018).	In	this	study	we	present	the	stray	

light	model	 based	 on	 PCA.	 This	model	 reduces	 the	 radiator	 stray	 light	 contamination	 to	 25DN/s/pix,	

0.25%	the	expected	intensity	of	the	asteroid	disk.	

l CCD	sensitivity	was	carefully	examined	based	on	star,	Jupiter,	Saturn,	and	Moon	observations	in	addition	

to	 preflight	measurements.	We	 characterized	 the	 sensitivity	 in	 two	ways;	 1)	 based	 on	 the	 hardware	

specifications	of	the	ONC-T,	and	2)	based	on	star	observations.	Moreover,	the	sensitivity	of	the	p-band	is	

more	accurately	determined	based	on	the	lunar	observations	than	stellar	observations	due	to	the	inherent	

ambiguity	in	the	stellar	reference	spectra.	Since	the	sensitivity	based	on	stellar	observations	for	the	ul-	to	

x-bands	and	the	lunar	observations	for	the	p-band	reproduced	the	spectra	of	the	Moon,	Jupiter,	and	Saturn,	

current	calibrations	use	this	characterization	of	the	sensitivity,	summarized	in	Table.	3.10.	Moreover,	we	

measured	 the	 temperature	 dependency	 of	 the	 sensitivity	 using	 Jupiter	 observations	 acquired	 with	

different	CCD	and	ELE	temperatures.	Using	the	relationship	derived	from	these	observations,	we	obtained	

a	 method	 for	 determining	 the	 sensitivity	 for	 different	 temperature	 circumstances,	 such	 as	 during	

touchdowns,	and	rover	and	lander	release	operations.	

ONC-W1	and	-W2	

l Empirical	bias	models	of	the	ONC-W1	and	-W2	were	derived	based	on	the	preflight	measurements.	The	

bias	level	during	the	cruise	phase	was	found	to	be	stable	over	the	past	three	years.	

l Dark	level	and	the	number	of	hot	pixels	are	similar	to	the	ONC-T.	

l The	flat-fields	for	the	ONC-W1	and	-W2	were	derived	based	on	the	pre-flight	measurements.	However,	

because	a	surface	 light	source	 is	needed	to	assess	the	accuracy	of	 these	 flat-fields,	we	are	planning	to	

evaluate	the	flatness	using	whole	disk	images	of	Ryugu	during	the	approach	phase.	

l CCD	sensitivities	for	the	ONC-W1	and	-W2	are	newly	derived	based	on	the	preflight	integrating	sphere	
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measurements	and	inflight	star	and	Jupiter	observations.	The	inflight	sensitivities	are	consistent	within	a	

10%	difference.	The	difference	in	spectral	shapes	between	the	sensitivities	derived	from	the	integrating	

sphere	and	the	inflight	reference	objects	are	suspected	to	be	the	major	source	of	the	differences.	

l Stray	light	in	the	ONC-W1	and	-W2	was	characterized.	The	stray	light	contamination	is	basically	weaker	

than	that	seen	in	the	ONC-T.	Moreover,	shorter	exposure	times	for	ONC-W1	and	-W2	yields	quite	small	

stray	light	effects.	

In	addition	to	the	global	spectral	mapping,	we	are	planning	to	conduct	highlighted	observations,	such	as	

sodium	 atmosphere	 observations,	 hydrated	mineral	 observations,	 and	 high-resolution	 imaging	 associated	

with	touchdowns.	 	

A	sodium	atmosphere	on	Ryugu	is	highly	possible,	as	Ryugu	is	expected	have	been	formed	in	a	volatile-

rich	 region	 in	 the	 early	 Solar	 System.	 We	 evaluated	 the	 detectability	 of	 a	 sodium	 atmosphere	 by	 testing	

observations	of	Jupiter’s	sodium	torus.	Mainly	due	to	the	dark	noise,	the	sodium	atmosphere	on	Jupiter	was	

not	detected,	but	the	upper	limit	for	detection	was	evaluated.	We	expect	to	detect	Na	atmosphere	of	several	

10s	kR,	similar	to	comets	(Leblanc	et	al.,	2008),	by	a	single	image	set	(v	and	Na)	and	of	several	100	R	by	using	

100	of	sets.	

Both	0.7-µm	absorption	and	steep	UV	slope	are	possible	 indicators	of	Hydrated	minerals	on	asteroids.	

Our	 calibration	 results	 suggested	 that	 the	error	 in	measurement	 of	 0.7-µm	 absorption	 is	 1.6%	 and	 the	 in	

measurement	in	UV	slope	is	<4%	using	ONC-T.	These	calibration	accuracies	imply	that	we	can	detect	0.7-um	

absorption	band	with	SNR~2,	assuming	the	typical	serpentine	absorption	of	3-4%	and	also	we	may	distinguish	

unheated	and	highly	heated	CM-like	materials	based	on	UV	slope.	

During	the	touchdowns	up	to	a	few	meters	of	altitude,	the	radiative	heat	from	Ryugu	is	expected	to	raise	

the	CCD	temperature	as	much	as	20	 ℃.	This	high	temperature	may	degrade	the	SNRs	of	the	cameras	to	150	at	

most.	 However,	 this	 may	 still	 be	 sufficient	 to	 detect	 the	 surface	 radiance	 variations	 of	 3%	 caused	 by	

illumination	conditions	or	albedo	variation.	Thus,	quantitative	imaging	with	very	high	resolution	up	to	a	few	

mm/pixel	is	possible.	

Our	first	inflight	observation	of	Ryugu	on	26	February	2018	shows	very	good	agreement	with	the	Earth-

based	observation	by	Ishiguro	et	al.	(2014).	This	confirms	that	our	radiometric	calibration	is	robust.	Finally,	

drastic	degradation	in	the	ONC-T	system	has	not	been	observed	during	the	3.5	year	cruise	phase.	However,	

some	observations	 such	as	 charge	 transfer	 time	measurement,	 flat-field	evaluation,	and	 round-about	 stray	

light	investigation	based	on	Ryugu	disk	observations,	and	updating	sensitivity	by	more	star	observations	are	

desired	to	improve	and	monitor	our	calibration.	And	also	time	dependent	change	should	be	recorded	at	regular	

intervals	to	monitor	the	health	of	the	ONC	system	for	one	and	a	half	years	of	the	rendezvous	period.	
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Appendix	A.	Specifications	of	ONC	

Detailed	specifications	of	ONC	three	cameras	are	summarized	here.	Most	of	the	information	are	already	

published	in	Kameda	et	al.	(2017)	and	Suzuki	et	al.	(2018).	

	

Table	 A1.	 Performance	 of	 CCD	 (E2V	 CCD47-20	 (AIMO)).	 Note	 that	 three	 cameras	 of	 ONC	 use	 same	 CCD	

products.	

	 ONC-T	 ONC-W1	 ONC-W2	

Format	 1056	(H)	pixels	×	1024	(V)	pixels	

(16	×	1024	pixels	on	both	sides	are	Optical	Black	pixels)	

CCD	pixel	size	 13	µm	

Gain	factor	(measured	value)	 20.95	e-/DN	 20.86	e-/DN	 20.11	e-/DN	

Read-out	noise	(measured	value)	 38.5	e-	 36.3	e-	 37.0	e-	

A/D	conversion	 12	bit	

Full-well	(measured	value)	 91,000	e-	 84,000	e-	 96,000	e-	

Pixel	sampling	rate	 3	MHz	

	

Table	A2.	Weight,	size,	and	electric	consumption	of	ONC	hardware	components.	The	basic	design	including	

CCD,	electronics,	and	optics	of	W1	and	W2	are	the	same.	Thus,	their	electric	consumption	is	the	same,	but	their	

dimension	and	weight	are	slightly	different	because	of	difference	in	radiator	and	hood	design.	

	 Weight	[kg]	 Size	[mm]	 Electric	consumption	[W]	

ONC-T	 2.1	 430	×	155	×	134	 8	

ONC-W1	 1.355	 249	×	155	×	95	 8	

ONC-W2	 1.295	 222	×	155	×	95	 8	

ONC-AE	 1.285	 200	×	220	×	50	 14	

DE	 2.67	 95	×	221	×	170	 15	

	

Table	A3.	Focal	length	and	distortion	coefficient	for	wide-,	v-,	and	Na-bands	of	ONC-T.	

Band	 Focal	length	[mm]*	 Distortion	coefficient	ε1	

[1/pix2]*	

Note	

wide	 120.50	 −9.28 × 10,:	

(RMS	error	0.1	pixels)	

Suzuki	et	al.	(2018)	

v	 120.50	 −6.766 × 10,:	

(RMS	error	0.3	pixels)	

Newly	 derived	 from	 the	 star	 image	

hyb2_onc_20151105_065349_tvf_l2a.fit.	
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Appendix	C.	Coordinate	System	and	Definition	of	Attitude	of	the	Spacecraft	

Figure	C1	displays	the	spacecraft	coordinate	system.	The	spacecraft	attitude	with	respect	to	the	Sun	could	be	

defined	by	XPNL	and	YPNL,	which	correspond	to	the	angles	of	the	Sun	to	+XSC	and	+YSC	plane	of	the	spacecraft.	

º ∙<FP = sinÌùn$ , º ∙ =FP = sinÏùn$,	
where	s	is	a	unit	vector	from	the	spacecraft	to	the	Sun.	The	angles	 ¡	 and	 ¬	 are	the	spacecraft	twisting	angle	

described	in	Suzuki	et	al.	(2018).	The	relationship	between	XPNL	and	YPNL	are	derived	as	

−sin¡ cos ¬ = sinÌùn$ , sin¡ sin ¬ = sinÏùn$.	

	
Figure	C1.	The	spacecraft	coordinate	system	and	the	image	coordinate	system.	(after	Suzuki	et	al.	(2018))	
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