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Abstract The thermal infrared imager TIR onboard Hayabusa2 has been developed to in-
vestigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is
one of the remote science instruments on Hayabusa2 designed to understand the nature of
a volatile-rich solar system small body, but it also has significant mission objectives to pro-
vide information on surface physical properties and conditions for sampling site selection
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as well as the assessment of safe landing operations. TIR is based on a two-dimensional un-
cooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akat-
suki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 um
with a field of view of 16 x 12° and a spatial resolution of 0.05° per pixel. TIR covers the
temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K.
Temperature accuracy is within 2 K or better for summed images, and the relative accuracy
or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for
the well-calibrated temperature range. TIR takes a couple of images with shutter open and
closed, the corresponding dark frame, and provides a true thermal image by dark frame
subtraction. Data processing involves summation of multiple images, image processing in-
cluding the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder
in the spacecraft digital electronics (DE). We report the scientific and mission objectives of
TIR, the requirements and constraints for the instrument specifications, the designed instru-
mentation and the pre-flight and in-flight performances of TIR, as well as its observation
plan during the Hayabusa2 mission.

Keywords Thermography - Thermal inertia - Temperature - Near-Earth asteroid -
Planetary exploration

1 Introduction

The thermal infrared imager TIR has been developed for Hayabusa2, a sample return mis-
sion to C-type near-Earth asteroid 162173 Ryugu (formerly 1999 JUs), to image the thermal
emission of the surface of the asteroid and investigate its surface thermo-physical properties.
This thermographic instrument is based on a two-dimensional uncooled micro-bolometer ar-
ray, inherited from the Longwave Infrared Camera LIR on the Akatsuki (Planet-C) Venus
climate orbiter (Fukuhara et al. 2011). Thermal radiometry has been one of the traditional
methods in planetary missions to measure temperature and surface physical properties of
planetary surfaces, and thermal mapping has been conducted by tracking or scanning the
surface from orbit (e.g., Kieffer et al. 1973; Chase et al. 1976; Kieffer et al. 1977; Chris-
tensen et al. 2001, 2003; Paige et al. 2009; Hiesinger and Helbert 2010). Recent progress in
two-dimensional detectors in thermal infrared wavelengths enables us to take thermal im-
ages of the target asteroid at a glance. This is a new tool in planetary missions to measure
the thermo-physical properties of the uppermost planetary surface, and we adopt this tool
both for scientific and mission purposes on Hayabusa2.

C-type asteroids are primitive and the most abundant type of asteroids in the solar sys-
tem that preserves a clue to understanding the origin and evolution of the solar system,
since it is less evolved (less thermally altered) due to its smaller size compared to plan-
ets and large moons. A significant physical property that would be still preserved in most
primitive asteroids is the physical condition, involving packing, porosity, and grain size dis-
tribution. In the planetary formation scenario, fine grains such as silicate dusts and ices in the
proto-solar nebula were accreted to form small bodies called planetesimals, which should
have been porous and loosely bound rubble-pile objects, several to tens of kilometers in di-
ameter. Planetesimals were destructed into fragments and coalesced in impact events, and
grew consequently to form larger bodies like planets. The interiors of the growing bod-
ies were pressurized and compacted by meteor impact events and gravitational lithostatic
force to become denser, less porous bodies. In the larger bodies, aqueous and thermal al-
teration processes should have occurred due to their volatile-rich composition and internal
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heat sources by radioactive nuclides. However, smaller primitive bodies might have avoided
the occurrence of such pressurized or altered processes and still remain in a relatively pri-
mordial condition. Icy components could have been possibly lost by sublimation to form
very porous and fluffy textures. Indeed, asteroid 953 Mathilde, the only C-type asteroid ever
explored by NASA’s Near-Earth Asteroid Rendezvous Shoemaker mission, has a low den-
sity of 1300 2 300 kgm 3 and on its surface, huge craters of hemispheric scale were found,
which could be caused by meteor impacts into the loosely bound materials (Veverka et al.
1999).

The physical state of the surface is informed through thermal imaging, or thermography.
Thermo-physical properties of the uppermost surface are characterized by grain size, poros-
ity, or packing of the surface materials. But direct evidence of thermo-physical properties
of primitive bodies is limited despite recent explorations. Thermal inertia values for Comet
9P/Tempel-1 and Comet 103P/Hartley-2, although still controversial, have been estimated to
be 50 or 150, using the data of 3 to 5 um near-infrared spectroscopy taken during flybys by
NASA’s Deep Impact and EPOXI missions (Groussin et al. 2013), respectively. These val-
ues are consistent with relatively fluffy, porous materials. During the historic landing of the
Rosetta/ Philae lander, the surface of Comet 67P/ Churyumov-Gerasimenko was observed
to be harder than predicted (Biele et al. 2015; Spohn et al. 2015).

A C-type asteroid is categorized by a flat, featureless reflectance spectrum in visible to
near infrared wavelengths, and considered to be the origin of carbonaceous chondrite me-
teorites. But a carbonaceous chondrite meteorite found on the Earth should be the most
consolidated part of the parent body and might not preserve its original physical condition
because of break-up during the ejection from the parent body or during entry into the terres-
trial atmosphere. In addition, the surface of C-type asteroids should have undergone some
degree of processing such as (i) dehydration due to heating by the Sun; (ii) gardening by
meteor impacts and ejecta sedimentation; (iii) space weathering through spattering by so-
lar wind irradiation, dissociation by solar ultraviolet photons, or micro-cratering by micro-
meteor impacts; and (iv) fracture by thermal fatigue from cyclic temperature changes caused
by asteroid rotation. Thus we know something of C-chondrite meteorites but we know little
about C-type asteroids without conducting detailed in situ observations and detailed analysis
of returned samples.

The physical state of the surface, i.e. whether it is covered with fine soils, pebbles, or
dense rocks, indicates its history of surface processes undergone in the past. Asteroids are
typically less dense (<1500 kgm™> for C-type, 2000 kgm™> for S-type) than terrestrial
rocks (2500 to 3300 kg m~2), suggesting that the asteroid is very porous (Consolmagno
et al. 2008). This may be caused by interstitial spaces between rocks or the existence of
micro-porosity such as fine pores or cracks inside of rocks. Intense meteor impacts cause de-
struction of the asteroid body, followed by re-accretion of impact fragments to form smaller
rubble-pile asteroids, occasionally with large boulders found on their surface, such as 25143
Itokawa (Fujiwara et al. 2006). Impact cratering produces ejecta sedimentation consisting of
pebbles and finer grains, although most fine grains tend to be lost by ejection due to the low
escape velocity. Impact cratering also causes shaking of the whole asteroid (asteroid quake)
to trigger granular flow, resulting in the geological dichotomy with the existence of flat
and rough terrains on the same asteroid like Itokawa (Yano et al. 2006). Dense rocks were
formed inside the larger parent body by lithostatic pressure and thermal metamorphism, but
they could be exposed on the asteroid surface by later fragmentation of the parent body by
intense impact events.

The physical state of the surface can be derived from thermo-physical properties such as
thermal inertia. Thermal inertia is defined as (kpCp)® in the ST unit of TI=Jm2K~'s707,
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Table 1 Relations of thermal inertia to surface physical state

Thermal inertia: I Surface physical state Example

—25-05g-1

~10 Very fluffy, high porosity (~80 %) Ceres, Martian soils

~50 Fine sand (d < 100 um) Lunar regolith

100~200 Sandy regolith (d~mm) Eros soil

200~400 Pebbles (d~cm) Itokawa flat terrain (Muses-C Regio)
400~1000 Boulders, rock fragments (d < m) Itokawa rough terrain

1000~2000 Rocks with high porosity

2000~ Monolithic rocks

where k is thermal conductivity of the material, p is its density, and Cp is its specific heat
at constant pressure. For a material of compact density py and porosity ¢, the bulk density
becomes p = pp(1 — ¢). More fluffy or porous materials (low p) which tend to have a low
value of k due to a small cross section for heat flow typically have lower thermal inertia. For
lower thermal inertia, the surface on a rotating asteroid shows a sharper and larger increase
and decrease of temperature at the dawn and the dusk areas, respectively. On the other hand,
denser materials (high p) typically have higher thermal conductivity and have higher thermal
inertia. In this case, the thermal energy sinks into the interior in the day time and is released
from the interior during night time, so that the surface temperature shows fainter and weaker
temperature variation with a delayed time of peak temperature. Thus, thermal inertia is the
physical property that informs the surface conditions which can be measured from orbit.
This is applicable to understanding and characterizing the surface scientifically, and also to
constraining the rock distribution to avoid hazardous landing areas or examining the thermal
environment for safe operation for spacecraft. A typical relation of thermal inertia to the
surface physical state is shown in Table 1 (e.g., Delbo et al. 2007; Okada 2016).

We briefly describe thermal experiments to be conducted in the Hayabusa2 mission in
Sect. 2, explain the objectives and requirements for the thermal infrared imager TIR in
Sect. 3, show the instrumentation of TIR in Sect. 4, display some performance characteristics
of TIR in Sect. 5, mention future observation plans during the cruise and asteroid rendezvous
phases in Sect. 6, and summarize this paper in Sect. 7.

2 Thermal Experiments in Hayabusa2
2.1 Outline of Thermal Experiments on Hayabusa2

On Hayabusa?2, thermal experiments investigating the surface of C-type asteroid Ryugu will
be carried out by both remote sensing and in situ. TIR will conduct thermal emission imag-
ing observations from the Home Position, about 20 km altitude sunwards from the asteroid
surface almost every week during the 1.5-year-long asteroid rendezvous phase. TIR will
continually take images of thermal emission of the whole asteroid surface in the 8 to 12 ym
wavelength band every 512 seconds, during one asteroid rotation which is 7.63-hours long.
In addition, when the spacecraft approaches the surface, TIR will also take thermal im-
ages from a lower altitude position, and spatially higher resolved images will consequently
be taken. Using the TIR data, a global thermo-physical model of the asteroid will be con-
structed. The radiometer (MARA) (Grott et al. 2016) on the surface lander (MASCOT) (Ho
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et al. 2016) deployed from Hayabusa2 will continuously measure the thermal emission off
the surface at one location through day and night for two asteroid days. MARA data is
complementary to that of TIR which observes mainly from the day side, and contributes to
improving the thermo-physical model.

2.2 Summary of Hayabusa2 Mission

Hayabusa?2 is the second asteroid explorer organized by the Japan Aerospace Exploration
Agency (Tsuda et al. 2013; Tachibana et al. 2014; Okada 2014). It was successfully launched
on 3 December 2014, and will rendezvous with near-Earth asteroid Ryugu in 2018 and per-
form a series of remote sensing, surface robot experiments, and impact experiments there, as
well as collect a sample from the surface of the asteroid, then return the sample to Earth in
2020. Hayabusa?2 has five remote-sensing experiments including an optical imager (ONC),
laser ranging (LIDAR), near infrared spectrometer covering the 3 pum absorption band
(NIRS3), thermal infrared imager (TIR), and radio science. Hayabusa2 also carries three
small rovers MINERVA-II and a small lander MASCOT (Mobile Asteroid Surface Scout)
developed in collaboration with European countries. MASCOT is a 10-kg sized hopping
lander which has a wide angle imager (CAM), a 6-band thermal radiator (MARA), a 3-axis
magnetometer (MAG), and a hyperspectral infrared microscope (MicrOmega). Hayabusa2
has a sampling device (SMP), and impact experiment devices including a small carry-on
impactor (SCI) and a deployable camera (DCAM).

The science goals of Hayabusa2 aim to understand the origin and evolution of materials
in the solar nebula and in the asteroid parent bodies, as well as to constrain the physical prop-
erties of small bodies during the planetary accretion processes. It is essential in Hayabusa2
to conduct global to local to micro-scale observations by exploiting the synergy of remote
sensing, surface measurements, and analysis of returned samples.

2.3 Target Asteroid Ryugu

The target body to be visited by Hayabusa2 is 162173 Ryugu, and its characteristics are
tabulated in Table 2 (e.g., Miiller et al. 2011; Ishiguro et al. 2014). Ryugu is a C-type (C,)
near-Earth asteroid, and its perihelion and aphelion is 0.96 and 1.42 AU, respectively. The
body has a roughly rounded shape with about 0.9 km in diameter, as derived from visi-
ble and infrared ground observations. The asteroid’s period of rotation is 7.63 hours. Its
reflectance spectrum is relatively featureless and flat, indicating a C-type asteroid in tax-
onomy. Although most previous observations have a low signal-to-noise ratio, one mea-
surement appears to show a faint absorption at the 0.7 um band (Vilas 2008), suggesting a
CM chondrite-like material. Its averaged albedo is about 0.05, consistent with the typical
C-type asteroid. Its current best estimate of global thermal inertia is 250 & 50 (TI), indicat-
ing the surface is unlikely to be covered with lunar-like fine regolith or monolithic dense
large boulders, but more consistent with pebbles. The only C-type asteroid explored to date
is the relatively large and low-density asteroid 953 Mathilde, considered to be a very loosely
bound rubble-pile object. To date, we do not know whether Ryugu resembles Mathilde or is
completely different from this known asteroid.

2.4 Temperature Profile on Asteroid Surface

The surface physical properties of the asteroid would indicate the history of surface pro-
cesses undergone in the past, depending on whether the surface is covered with fine soils,
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Table 2 Characteristics of

162173 Ryugu (e.g., Miiller et al.

2011; Ishiguro et al. 2014)

Taxonomic type
Diameter

Axis ratio

Rotation period

Pole axis (A, B)
Geometric albedo (Pv)
H

G

Thermal inertia

Orbit (solar distance)

Ce

0.87 +0.03 km
a/b=1.0153,b/c =1.0135
7.63 £ 0.01 hour

(329, —39) £ 20°

0.05

18.82 +0.021

—0.110 £ 0.007

250 £50Jm 25 05K !
0.9633-1.4159 AU

Fig. 1 Calculated temperature 400
profiles as a function of surface

thermal inertia for the equatorial 350
region of an asteroid with a

rotational period of 7.63 hours, 300

where albedo = 0.05,
emissivity = 0.93. Details are

. . 250
given in the text

200
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pebbles, porous boulders or dense rocks. Asteroids are typically less dense than terrestrial
rocks, implying higher porosity.

Thermo-physical properties are highly affected by the physical state of the surface. Since
the heat transfer through a porous or fluffy surface is small, the heat radiation from the Sun
is deposited in the thin layer with low heat capacity at the uppermost surface and never
penetrates to greater depths. In this case, the surface temperature increases sharply at dawn,
but also decreases fast at dusk. On the other hand, heat transfer is larger in a denser, more
conductive surface, and part of the heat input from the Sun sinks into the interior during
daytime, but is released from there during nighttime. In this case, the temperature changes
become rather moderate and the timing of peak temperature is delayed from the local noon.

Figure 1 shows an example of the temperature profile as a function of surface thermal
inertia at the equatorial region of an asteroid with a rotational period of 7.63 hours, where
the solar distance is 1 AU, the rotation pole is perpendicular to the asteroid orbital plane, and
the surface albedo and emissivity are 0.05 and 0.93, respectively. For the very fluffy surface
case (the thermal inertia / = 10 TI), the peak temperature is about 400 K almost at noon,
while the temperature becomes 110 K in the nighttime. For the case of pebbles (I = 200 TI),
the peak temperature is about 370 K in the afternoon at 18° longitude while the temperature
is higher than 210 K even during nighttime. For the dense rock case (I = 2000 TI), the
temperature ranges between 250 and 300 K and the peak temperature is approximately at
45° longitude.
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Table 3 Targets and the possible objectives for TIR observations

Target Description Operation

Boulders Evolution of materials originated from parent body interior LA, CU, HP

Crater walls and Direct probing of interior materials and structures LA, HP

interior

Regolith Flow and sedimentary processes under micro gravity HP, LA, CU

Overall Comparison with ground observation HP, LA

thermo-physical

properties

Yarkovsky/Yorp Total mass, moment of inertia in asteroid HP

effects

Phase function Updating TIR emission phase functions for roughness HP
modeling

(angular relation)

Moons Orbiting satellite for gravity measurement HP

Dust clouds Evidence of levitation, and existence of floating dust HP

Asteroid shape model Asteroid shape modeling including night time HP

Geologic features Detection of features such as ejecta, sediments, ponds, buried LA, HP
rocks

SCI crater search Finding the SCI impact crater using temperature difference LA, CU, TD

Touchdown (TD) site Touchdown site selection and geologic context description CU, TD

Operation range: HP: Home position (10 ~ 20 km), LA: Low altitude (1 ~ 5 km), CU: Close-up (0.1 ~ 1 km),
TD: Touch-down (<0.1 km)

We have conducted numerical studies with a thermal model of asteroid Ryugu as well
as general cases for a variety of thermal inertias and pole inclinations in more detail, which
will be reported in the companion paper (Takita et al. 2016).

3 Objectives and Requirements of TIR
3.1 Scientific Objectives of TIR

The main goals of TIR for the investigation of thermo-physical properties of the asteroid
surface are (1) to understand the origin and evolution of asteroids and (2) to characterize the
current state of a micro-gravitational small body. The targets and their possible objectives for
TIR observations from various altitudes are shown in Table 3. In Fig. 2 we summarize the
traceability map for the science objectives, observation targets, information requirements,
and the performances required for TIR.

3.1.1 Understanding the Origin and Evolution of Asteroids

TIR will observe the asteroid structures found on the surface or inside the huge craters
which are indicative of the asteroid formation processes. A homogeneously porous structure
is likely in the event that the asteroid was formed by simple accretion growth of silicate
dust and ice compounds, followed by sublimation of volatile components. On the other
hand, a homogeneously dense structure is considered if the asteroid (or its parent body) has
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Objectives

Observations

Requirements

TIR Performances

(1)Interior structure of C-
asteroid: origin and

Thermal inertia of
boulders and crater

surface materials: surface
evolution

- Sediments on small body

- Difference between surface and
interior

Res.: < 10m (flat)
<1m (SCl crater)

Global Thermal Imaging:
Temp: 230~420K
Duration: >1 rotation

Opportunity: < 2 weeks

evolution walls

- Why C-type is less dense? TI: <20% FOV: global (>§° at HP) FOV: 16°x12°
Macro/Micro Porosity? Res: <5~10m Res: < 0.5TD site (50m) IFOV: 0.05°

- Thermal/aqueous alteration in =IFOV: <1mrad | —7 Temperature:

parent body or sublimation of Interval: > 8 points/site Temp: <200-440K

ice? Thermal inertia of flat <10 min at HP Accuracy: <3K

sedimented area <5minat <1km NETD: <0.3K
. Attitude: < 0.5pix/s F ti
N it Tl: <20% unctions
(2)Physical conditions of ° =<0.025%/s Sum: 1~128

Detector and Optics:
Imager: UMBA
(328 x 248 pixel)

Compression

Global Thermo-physical
model

Local Thermal Imaging
Temp: 270~440K
Duration: > 30min

Res.: <20m FOV: >12°
(3)Yarkovsky/YORP effect T: <5K Rfsl.F:gv%Tl |
=orbit/rotation evolution AT: <0.5K In_tervaI: < 1nr;1ri?1
- Verify the model # Global shape model is ’
- Moment of inertia needed

Shape model
Geologic model
Res.: <10m for global
< 2m for local

(4)Moons and dust clouds Wide FOV Thermal

- Gravity measurement M~ Imagery

- Dust environments FOV: > 4 Asteroid size
iFOV: 5m objects

Wide FOV Thermal Image
FOV: > >12° at HP

Fig. 2 Traceability map for science objectives, observations, information requirements, and TIR perfor-
mance requirements

undergone a severe compaction process by impacts and thermal alteration after the body was
accreted. Very heterogeneous features are expected if the asteroid is a rubble-pile object and
composed of multiple boulders of various sizes that originated from impact fragments of an
evolved parent body.

A thermal inertia map that shows the regional distribution of surface physical properties
such as porosity or grain size lets us constrain the asteroid history. The thermal inertia of
huge boulders implies a degree of past compression in the parent body. The thermal inertia
of smooth flat area can deliver important information on the formation by ejecta sedimen-
tation or granular flow under micro-gravity. The composition of surface materials cannot
be determined solely by TIR but could be much improved if the thermal emission compo-
nent estimated from TIR data is used for subtraction from the NIRS3 spectrum (Iwata et al.
2016).

3.1.2 Characterizing the Current State of Micro-Gravitational Small Body

The orbital and rotational evolution of solar system objects is affected by two thermal ef-
fects, the Yarkovsky effect and the YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect
(e.g., Bottke et al. 2006). If an accurate thermo-physical model is constructed, the asteroid’s
density or moment of inertia is constrained. The relation of asteroid size to thermal inertia or
typical thermal conductivity can be compiled from ground-based observations (Delbo et al.
2007). TIR will provide a disc-resolved thermal inertia map of Ryugu, which will be a good
ground truth to verify and improve the thermal models of the asteroid. Thermal imagery can
be a more powerful tool for detecting geologic features than optical imagery can, which is
especially true for surfaces with varying porosity, such as crater ejecta, veins, grooves, or
buried structures. Thermal emission from the dust surrounding the asteroid which might be
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supplied by electrostatic forces (levitation) or micro-meteor impacts might be detected by
thermal imagery.

3.2 Mission Objectives of TIR

TIR data is also used for mission objectives such as landing site selection as well as safe de-
scent operation for sample collection. In Fig. 3, we present the traceability map for mission
objectives, observation targets, requirements for information, and the performance required
for TIR, focused on conducting the descent and touchdown operations.

3.2.1 Landing Site Selection

Thermal inertia derived from TIR observations reflects the typical particle size of the regolith
layer so that the landing site can be selected that is most suitable for sample collection from
the viewpoint of particle size (1 mm diameter), even from Hayabusa2’s Home Position. If
particles are 1 mm in size, the sample is expected to contain most of the significant minerals
and textures so that it is sufficiently informative for analysis. If particle size is less than
0.1 mm, as was typical in the case of samples returned by Hayabusa, the sample may only
include a limited subset of minerals and textures (Tachibana et al. 2014). On the other hand,
the sampling device should collect samples much smaller than 10 mm, so that the best size
range for sample collection is about 1 mm in diameter. The thermal inertia map produced
by TIR will help finding the best area with regard to grain size.

Using the thermal inertia map by TIR, the highest temperature ever experienced in the
asteroid’s history is estimated at a given depth for each site on the asteroid, according to a
dynamically simulated trajectory of the entire lifetime of a near-Earth asteroid (Michel and
Delbo 2010). This may be important for determining what kinds of organic matter are lost
due to thermal processing or still remain on the surface of the asteroid, and may be one of
the key pieces of information for landing site selection.

3.2.2 Safe Operation for Descent of Spacecraft to the Surface

The thermal emission energy of the surface of the asteroid as well as the surface temperature
are measured by TIR, and also estimated at any given time using the thermo-physical model
constructed by TIR observations. Thermal inertia maps are often used to estimate rock or
boulder populations (Golombek et al. 2003). Prior to the descent and touchdown operation,
it is important to assess whether the surface thermal environment and boulder distribution is
hazardous for landing or not.

3.3 Requirements for TIR Observation and Specification

The desired performance of TIR is discussed in 2 and 3 for science and mission objectives,
respectively. The spatial resolution expected during typical operation phases is shown in
Table 4, where IFOV = 1 mrad. Spatial resolution is subject to the following three require-
ments: (1) TD candidate site (flat area of >50 m) must be resolved by at least 2 pixels from
HP (H =20 km), which is <1.2 mrad or 0.07°; (2) SCI crater (D > 2 m) must be resolved
by at least 2 pixels from the low altitude (H = 1 km), which is <1 mrad or 0.057°. The
touchdown position touched by sampler horn (D = 20 cm) must be resolved by at least two
pixels from 50 m altitude, which is <2 mrad or 0.11°. In summary, IFOV of TIR should be
<1 mrad. We summarize the requirements for TIR observation and specification in Table 5.
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Table 4 Estimated spatial resolution for main operation phases of TIR assuming an IFOV of approx.

0.88 mrad

Observation phase

Altitude [km] Spatial res. [m]

Remarks

AP: Before arrival ~ 2000~20 1700~17 e Asteroid light-curve measurements, compared with
ground observations
e Search for moons, observation of dust
environments

HP: Global features 20~10 17~9 e Image every several minutes for one rotation, once
a week
e Solar phase angle 0-45°, solar distance
0.96-1.42 AU

Mid-altitude: ~5 ~4 e Several times, global coverage and higher

Global and high res. resolution
e Every several minutes in one rotation

Low-altitude: ~1 ~1 e 1 h observation before TD, Landers/SCI

Local site features deployment
@ 280 m x 210 m area, SCI crater finding

TD: Local site, <0.05 <0.05 o Several time for TD and TD rehearsals

high res. o Highest resolution for each sites

XO: Larger 20~10 17~9 e Large phase angle observation (s > 45°)

phase angle o From East—West, North-South

Objectives Observations Requirements TIR Performances

Sample return froma
primitive asteroid

1)Thermal alteration of materials
in planetesimals to asteroids
2)Impact fragmentation and
coalescence processes
2')Current evolution processes on
asteroids

3)Interaction between hydrated
minerals and organics
4)Circulation of materials in solar
nebula

(1)Sampling site selection
- Prgrain size

- Max toper emperature
experienced in history

- Surface geological map

(2)Safe descentand landing
- Thermal environments
- Asteroid shape model

Grainsizein relation to
thermal inertia:
<100: d<0.1mm
100~200: d~mm
200~500: d~cm
500~: d~10cm
1000~: porous rock
2000~: dense rock

N

Thermal history
Temp profile in rotation
Thermo-physical model
Past trajectory
-> Max T experienced

Thermal analysis
Possible safe descent and
landing at the solar distance

<1.25AU

Fig.3 Traceability map for mission objectives, observations, information requirements and TIR performance

Shape model
Geologic map
ejecta or buried features
boulders or crater walls

Global Thermal Imaging :
Temp: 230~420K
Duration: >1 rotation
FOV: global (>6° at HP)
Res: < 0.5TD site (50m)

= IFOV: <1mrad
Interval: > 8 points/site
<10 min atHP
<5minat <1km
Attitude: < 0.5pix/s
=<0.025%s
Opportunity: < 2 weeks

L7

Detector and Optics:
Imager: UMBA
(328 x 248 pixel)
FOV: 16°x12°
IFOV: 0.05°

Temperature:
Temp: <200-440K
Accuracy: <3K
NETD: <0.3K

Functions
Sum:1~128
Compression

Local Thermal Imaging (at
<1km)

Temp: 270~440K

Duration: >30min

FOV: >12°

Res.:<1m

= IFOV: <1mrad

Interval: < 1min

Shape model
Geologic model

Res.: <10m for global
< 2m for local

requirements, focused on conducting the descent and touchdown operations
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Table 5 Requirements for TIR observations and specifications for each objective

Objectives

Requirements for TIR
observation

Requirements for TIR
specification

Thermo-physical properties
of Boulder (originates from
parent body interior)

o density of C-type asteroid
is low

o thermal alteration in parent
body

e similarity to C-chondrites

Thermal inertia distribution of
Crater interior (current interior
structure)

o Interior density structure

of 1999JU3

o Interior heterogeneity

of 1999JU3

Thermal inertia map on
regolith surface

e grain size distribution and
formation of surface
sedimentation

e regolith sticking or cohesion
mechanism (for very fluffy
case)

e thermal conduction under
microgravity

Comparison

with ground-based asteroid
thermal model

e heterogeneity from surface
to interior

(formation process of
1999JU3)

e consistency with ground
based TPM

o Verification of diameter-TI
relation by Delbo et al. (2007)

Yarkovsky/YORP effects

e Relation and comparison
with thermal emission
un-isotropy to evolution of
orbit and rotation

o Asteroid mass,moment of
inertia

Uppermost surface fine grains
o Existence and origin
of fine grain layer

Thermography of boulders
o T profile by rotation
(accuracy <5 K)

o different solar distance

e spatial resolution <10 m

o T profile by rotation
(accuracy <5 K)

o different solar distance

e spatial resolution <10 m

Global thermal mapping:

o T profile by rotation

(accuracy <5 K)

o different solar distance

e spatial resolution <20 m

Global shape model (<10 m res.)
Surface conditions informed by
ONC, MINERVA, MASCOT, sample

N.A.

Global thermal mapping:

o T profile by rotation

(accuracy <5 K)

o different solar distance

e spatial resolution <20 m
Global shape model (<10 m res.)
Rotation change (~° /year),
Orbit change (range <km)

Temperature distribution on boulder
or base rock

o T difference between fresh surface
on crater center to the surrounding
area with spatial res. <1 m.

FOV: >6° @HP, >10° @1 km
IFOV: <1 mrad @HP, 1 km
NETD: <0.5K @350 K

AT: <5K @350K

FOV: >3° @HP, >10° @1 km
IFOV: <1 mrad @HP

NETD: <0.5 K @350 K

AT: <5SK @350 K

FOV: >6° @HP

IFOV: <2 mrad @HP

NETD: <0.5 K @350 K

AT: <5K @350K

Shape model: 10 m res.
Surface condition and materials
(grain size, porosity,
composition)

N.A.

FOV: >6° @HP

IFOV: <2 mrad @HP

NETD: <0.5K @350 K

AT: <5K @350 K

Shape model: 10 m res.

Rotation detected by ONC (<1°)
Range (< a few km)

FOV: >6° @1 km
IFOV: <1 mrad

NETD: <0.5 K @350 K
AT: <5K @350K

@ Springer



266

T. Okada et al.

Table 5 (Continued)

Objectives

Requirements for TIR
observation

Requirements for TIR
specification

Thermal modeling:
topographic and roughness
effects

o self-heating effects

e solar phase angle effect by
grain size

SCI impact crater observation
o Difference from surface to
interior

e Area and grain size of ejecta

Global thermal mapping and local
site high res. thermal imaging

o T profile by rotation (<5 K)

e Data at different solar distance

e Spatial res.: <1 m

Global shape model (<10 m res.)
Local surface model (<10 cm res.)
Surface conditions informed by

ONC, MINERVA, MASCOT, sample

Local high res. Thermal imaging
e Inside and surrounding area
of the SCI crater

o T profile by rotation (<5 K)

FOV: >6° @1 km

IFOV: <1 mrad

NETD: <0.5K @350 K

AT: <5K @350K

Shape model: 10 m res.
Surface condition and materials
(grain size, porosity,
composition)

FOV: >6° @ <1 km
IFOV: <1 mrad

NETD: <0.5K @350 K
AT: <5K @350 K

Surface geology and shape e Global thermal mapping: FOV: >6° @HP

modeling o T profile by rotation (<5 K) IFOV: <1 mrad
(even in the night side) e Multiple solar distance NETD: <0.5 K @350 K
for I > 50. e Spatial res.: <20 m AT: <5K @350 K

e Contemporary to optical
shape model

FOV: >12°
Total integration: >5 s

Dust measurement

e Dust environments around
asteroid

e Dust ejection by SCI impact

e Wide angle (> a few asteroid
diameter)

o Long time exposure in total
(several seconds)

Search for moons e Wide angle (> a few asteroid FOV: >12° @HP (20 km)

e Existence of moons around diameter) IFOV: <1 mrad
small body e Size down to 10 m class (1/100 NETD: <0.5 K@350 K
e Gravity information (mass: 10*6) AT: <5K @350 K

4 Description of the Thermal Infrared Imager TIR instrument
4.1 Outline of TIR

TIR is a single-band thermal infrared imager with the wavelength ranging from 8§ to 12 ym
and the field of view covering 16 x 12°. The detector is based on a two-dimensional un-
cooled micro bolometer array (NEC 320A) with 328 x 248 effective pixels, a germanium
detection window of anti-reflection coating, and a thermoelectric cooler module (Peltier
module) to control the detector temperature at 313 K (40°C) within 0.1 K stability. The spa-
tial resolution is about 0.05° per pixel, which corresponds to 17 m per pixel when observing
the asteroid from the Home Position at 20 km altitude. TIR has a shutter mechanism driven
by a stepping motor and two positioning sensors. Images are taken in pairs, with the shut-
ter closed and open respectively, and each pair of images thus consists of one dark image
(shutter closed) and one exposed image (shutter open). The thermal images are then derived
from the subtraction of the two images. The shutter temperature is monitored with 0.01 K
accuracy, so that the bias of each pixel is cancelled. The imager has been well calibrated in
the laboratory from 233 K to 423 K, which covers the expected temperature range of the
sunlit surface of asteroid Ryugu. The detectable temperature range is wider than this, from
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o

HAYABUSA2  TIR-S HAYABUSA2  TIR-AE B

Fig. 4 Photographs of TIR-S (left) and TIR-AE (right)

Table 6 Performance of TIR

Mass 3.28 kg

Power 18 W (nominal)

Detector Uncooled bolometer array NEC 320A (anti-reflection coating)
Pixels 344 x 260 (effective 328 x 248)

Field of view (FOV) 16.7 x 12.7°

IFOV 0.89 mrad (0.051°)

MTF (@Nyquist Freq.) 0.5

F-number 1.4

Temperature range 233-423 K (well calibrated), 150460 K (detectable range)
NETD <0.3

Absolute temperature range <3K

A/D converter 12 bit (15 bit after summed)

Reference temperature Shutter temperature (monitored)

Frame rate 1/60-2.1 s (summation for m = 1 to 128 images)

150 K to 460 K, which covers the whole asteroid even in the nighttime for the thermal inertia
>50 TI.

4.2 Configuration and Functions of TIR

TIR is a light-weighted thermal infrared imager, inherited from the Longwave Infrared Cam-
era (LIR) onboard Akatsuki (PLANET-C) Venus climate orbiter (Fukuhara et al. 2011),
which enabled development on a very short timescale and use of the same apparatus for cal-
ibration for the cold temperature range in the space chamber. TIR consists of the sensor unit
(TIR-S), the power supply unit (TIR-AE), and the digital electronics unit (DE) (Hihara et al.
2014). The photographs of TIR-S and TIR-AE are shown in Fig. 4, and the performance of
TIR is shown in Table 6. A 3D image of TIR-S is shown in Fig. 5.

TIR-S consists of two parts: the sensor body and the hood (sunshade). The sensor body
includes the optics, detector, analog electronics, analog-to-digital converter, image proces-
sor, data interface to DE, telemetry and command interface, Peltier cooler controller, and
power regulation units.

The optics unit has three pieces of Germanium lens, the mechanical shutter, and a band
pass filter attached in the aperture. The diameters of lens and aperture are 47 mm and 25 mm,
respectively, and the F value is 1.4. The filter passes from 8 to 12 um. The mechanical
shutter is located between the lens and filter, and operated using a stepping motor. The
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Fig. 5 The characteristic of
TIR-S (modified from Fukuhara UMBA
etal. 2011)

Germanium Lenses

Sunshade

Stepping Motor

Fig. 6 Photograph of the detector package and the uncooled micro-bolometer array in the package, and
scanning electron microscope image of a detector pixel (from Hihara et al. 2014)

shutter is only opened to take images and basically closed to protect direct irradiation of
sunlight for contingency. The shutter is made of an aluminum plate with almite processing,
or anodic oxidized coating, and its hemispherical emissivity is 0.89. The temperature of
the shutter is monitored at 0.01 K accuracy as Shutter Temperature, which is used as the
reference temperature for calibration. The shutter position, i.e. whether it is open or closed, is
detected with two position sensors. The filter is attached in the aperture, whose temperature
is monitored at 0.01 K accuracy as Case Temperature. The optics unit is thermally controlled
by the Heater Control Electronics (HCE) of the Hayabusa2 spacecraft. The temperature is
monitored at 0.5 K accuracy with a sensor (Pt2000 resistance) as Channel 60A of HCE, and
actually controlled in space within 0.3 K stability (monitored at 0.01 K accuracy as Lens
Temperature in TIR-S), with proper settings of heater duty ratio and set points.

The detector unit NEC320A is originally a commercial package which includes the two-
dimensional bolometer array of 344 x 260 pixels and the temperature control system using a
Peltier cooler. The detector has 328 x 248 effective pixels. Each pixel has 37 x 37 um pitch
and is 70 % of the detection area. Six pixels at the top and bottom in the vertical axis are
used as optical black pixels. Eight pixels at the left in the horizontal axis denote no output
(noise level) and the next 8 pixels are used as optical black pixels. The cooler unit keeps
the detector temperature at 313 K (40°C) or 283 K (10°C), selected by commands, and
controls it within 0.01 K stability. Temperature stability is critical to TIR’s output, and the
main reason for TIR operating at 313 K (40°C) is its higher sensitivity at this temperature.
The temperature of the detector package is also monitored at 0.01 K accuracy as Package
Temperature. The detector unit and a close-up of a detector pixel are shown in Fig. 6.

@ Springer



Thermal Infrared Imaging on Hayabusa2 269
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Fig. 7 Characteristic diagram of TIR-S, TIR-AE and DE interface

The hood is an aluminum-made horn-shaped sunshade to avoid direct input of sunlight.
The length outside of —Z panel is 150 mm, with a 122-mm diameter at the top. FOV of
the hood is 22.92° and the avoidance angle is 52°. The outside of the hood is effectively a
radiator using 0.2 mm thick Ag/Teflon without ITO (Indium Tin Oxide) coating. Inside the
hood there is a baffle structure with anodic oxidation coatings on aluminum. The hood is
mainly used to prevent sunlight from warming the optics, but direct sunlight can cause dam-
age to the bolometer pixels. The hood is thermally isolated from the —Z panel of spacecraft.
Temperature is monitored by HCE as Channel 124A.

TIR-AE is the power supply unit that converts the unregulated 50 V bus power to +2.5V
and +5 V for data processing, +5 V for the detector, +6 V for the Peltier cooler, and
+15 V for analog electronics. The temperature of TIR-AE is also monitored by HCE as
Channel 59A.

DE is the digital electronics for DHU interface of all the scientific instruments and for
the data recorder (DR). In addition, TIR uses the functions of DE such as the image data
interface, image processing, image buffers (SDRAM 256 MB), and high-speed image data
transfer to DR.

The characteristic diagram of the TIR and DE interface is shown in Fig. 7, and the dia-
gram of signal flows and power lines in TIR-S and TIR-AE is shown in Fig. 8. Functions of
each unit in TIR-S are summarized in Table 7, and details of functions related to TIR and
related systems are shown in Table 8.

4.3 Imaging Processes of TIR

TIR has six operation modes including Off, Standby, Protect, Idling, Parameter Setting, and
Imaging modes. TIR can take an image only during the Idling mode. After the unregulated
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Fig. 8 Schematic diagram of signal and data flow, power lines, and temperature control lines in TIR-S and

TIR-AE

Table 7 Summary of functions of each unit in TIR-S

Unit

Functions

Optics -

Shutter -

Detector package -

Analog electronics -

Digital electronics -

HK and telemetry -

Configuration: Germanium lens (3 pieces): ¢47, F1.4/FL =42.2 mm,
MTF > 0.5

Concentrate IR lights from outside to focus on the detector
Band pass filter to limit the wavelength of 812 um

Configuration: Stepping motor, shutter plate with positioning sensors, shutter
controller

Change the target: Incident lights and homogeneous target plate with Temp
monitor

Detector: detect the incident IR light that passes the filter and convert it to
electronic signal

Peltier cooler: stabilize the detector temperature at 313 K (40°C)
Amplifier for readout signal from detector unit and Analog-to-digital converter
Controller for Peltier cooler in the Detector package

Monitor the temperature of PCD and reference voltage in Detector package
/0 Interface of command and telemetry to DE

Timing clock generation for operation of detector

Perform the internal calibration in Detector package

Store the OFPN data into RAM

Transfer of image data to DE after digitized by ADC

Detect the temperature at each unit and generate telemetry data

Monitor the base temperature by Pt resistance sensor

Multiplexer and analog-to-digital converter for all the HK data
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Table 8 Functions of TIR

Functions Contents Remarks

Command response Control and parameter settings for TIR by UART interface

from DE commands. Maximum rate is 1/16 s (62.5 ms)

Send telemetry to DE HK data and command response after commanded. UART interface
Every 1 second, and just before taking images

Imaging Take images at 60 frames/sec, and A/D conversion

Image processing

Send images to DE

OFPN data readout
and set

Get HK telemetry

Bolometer
temperature control

Shutter open/close

Onboard calibration
Bolometer protection

Sunshade

Regulation of input
current (DC/DC
converter)

Reference
temperature

Image summation

Image subtraction

Image summation by
SW

Image compression

Temperature control
at lens

Temperature control
at TIR-S mounted
panel

Monitor temperature

Calibration of images with the OFPN data and the
parameters set by commands

Send the numbers of images set by commands

Read the OFPN data from DE flash memory and set
into TIR-S memory

Get the latest HK data of TIR constantly and store
them into the register

Control the bolometer temperature at 40°C or 10°C
by commands

Dark image and Reference temperature. Fine/course
movement

Calibration onboard for bolometer outputs duration
Transfer to safe mode when the alert is detected

Shield the direct sunshine or thermal emission off the
asteroid to avoid the lens too heated

Regulate unregulated 50 V from PCU and supply
+5V(D), +5 V(A), +2.5V, +6 V, +15 V

Monitor temperatures at Package, Case, Shutter,
Lens, and Hood

Sum the ereset numbers of images at Pre-buffer of
DE, by 2™ (M = 0-7), stored as 32 bit data. Stored
address can be set for each image (max. 32 for TIR)

Subtract between images stored in the buffer.
Thermal image is derived by shutter-open image
minus shutter-close one

Add, Subtract, multiply, divide images in the buffer.
MEAN images for N = 3~16 images

Compress images with StarPixel (lossless, lossy).
ROI (region of interest) can be set.

Lens temperature can be controlled by 0.5 K step
by HCE

Panel temperature can be controlled by 0.5 K step
by HCE

Monitor the temperature of Sunshade (Hood)

Dedicated line

Accuracy < 0.1 K

Duration for 1 s

Duration for 40 s

Avoidance angle
of the sunshade
is +£26°

Accuracy < 0.1 K

DE function

DE function

DE function

DE function

HCE function

HCE function

HCE function
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Table 9 TIR operation mode

Modes Contents
TIR Off Power off
Standby Initial state (peltier control = off)
Protect Safe mode for detector (peltier control = on)
Idling Ready for imaging
Parameter Detector internal correction and calibration
setting
Imaging Image taking and Data output from TIR
OFF POWER ON STANDBY PLT OFF PARAMETER
mode « B mode SETTING
POWER OFF mode

BOL PROTECT RST IDLING IMAGE TAKE
PROTECT mode > IMAGING
PROTECT Automatically mode

mode

PROTECT

Fig. 9 Diagram of TIR mode transfer

50 V power is supplied from PCU to TIR-AE, TIR starts and enters Standby mode. The
Peltier cooler must be activated by sending the PLT ON command, and TIR enters Protect
mode after the temperature of the bolometer is controlled at 313 K (40°C). Then TIR moves
to Idling mode by sending BOL PROTECT RST command. The onboard flat noise pattern
must be set in the TIR memory before taking an image. One method is to conduct onboard
calibration by CAL EXEC command. Another method is to upload the OFPN data from
DE, which is constructed on ground and uploaded beforehand. The TIR image is taken
by sending IMAGE TAKE command. After the image has been taken, TIR automatically
moves to Idling mode again. The definition of each mode is shown in Table 9, while the
mode transfer-by-commands are shown in Fig. 9.

The signal readout values from the two-dimensional bolometer array have a large diver-
sity pixel to pixel. Therefore TIR always takes a pair of images when the shutter is closed
and open as mentioned in Sect. 4.1, corresponding to a dark frame image and an exposed
one, respectively, and then subtracts the dark frame image from the exposed one. The shutter
is basically closed during the mission, so that the first image is usually taken when the shut-
ter is closed. The shutter has the quasi black body surface colored black by anodic oxidation
coatings with an emissivity ~0.89. Its temperature is kept at 300 K to 303 K and monitored
at the resolution of 0.01 K. Thus the closed image can be used as the reference temperature
for data analysis. The image is stored in the pre-buffer in the 1 MB area of image interface
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in DE. The shutter is opened by the stepping motor in 1 second. Then the second image is
taken when the shutter is open. The image is stored in the next 1 MB area of the pre-buffer.
There are two buffers with 128 MB SDRAM, and up to 128 pairs of TIR images can be
taken and stored in the pre-buffer, but 32 images (16 pairs) are the maximum allocation for
TIR and the rest are used for ONC in the current plan.

After taking images, the analog electronics unit reads the output signals from the detector
at 60 frames per second and digitizes them into 12 bit image data through the analog-to-
digital converter. The readout data is compared with the onboard flat pattern noise (OFPN)
for each pixel and produced as image data in the image processor in DE.

4.4 Onboard Data Processing for TIR in DE

The readout image data is transferred to the pre-buffer in the image data interface of DE.
Before taking the image, the number of images to be summed can be set by commands.
Currently 2N images are summed there, where N =0, 1,2, to, 7. The original image digi-
tized in TIR-S is 12-bit data but treated as 16-bit data in DE. In case of N > 4, the image
product becomes larger than 16 bit, so that the DE treats the TIR summed image as 32-bit
data in the pre-buffer. The readout time, in case of N = 6 (64 images to be summed), will
take 64 images x 1/60 second per frame = 64/60 = 1.07 second for the summed image.
The time delay between the images with closed and open shutter is typically 2 seconds.

After the image sequence finishes, DE transfers the summed images stored in the pre-
buffer to the software buffer, and then transfers them to the temporary buffer. Here only
16 bit data can be treated in the DE software buffer. The data compression algorithm used
here is StartPixel (Hihara et al. 2014). The algorithm can only treat the image with 15-bit
and 128 x 128 pixels. Thus, during this process, the images of 344 x 260 pixels x 32-bit
data in the pre-buffer are transformed to images of 384 x 256 pixels x 15 bit, with 6 tiles
of 128 x 128 pixels, and stored into the temporary buffer. In this procedure, four pixels at
the bottom of the original image are erased, 40 pixels at the left are attached to the right,
and all the data is bit-shifted to become 15-bit data as non-negative values in signed short
format.

The pairs of images with shutter closed and open stored in the temporary buffer are
subtracted to produce subtracted images. This operation is the equivalent of dark frame
subtraction in conventional photometry. The subtracted images show good accuracy and
stability is maintained quite well even if the temperature condition of TIR-S is changed. The
subtracted images will be transferred to the data recorder (DR). Typically the image data is
compressed using the StarPixel algorithm before transferring to DR.

Figure 10 shows examples of a TIR image pair of a 373 K blackbody target using the
collimator (METS L-10-2.9, CI Systems) taken on 13 November 2013, and another TIR
image pair of the deep sky in-flight observation taken on 27 February 2015. Image A is
the shutter-open (exposed) image of the 373 K blackbody target and looks very noisy with
dispersive bias pixel to pixel. Image B is the shutter-closed (dark frame) image, and Image C
is derived by subtracting the two images, showing a clear blackbody target. The images D
and E are a deep sky image (shutter open) and the corresponding dark frame image (shutter
closed), respectively, while the image F is the result of subtraction of images D and E.

4.5 Observation Program

In the Hayabusa2 mission, scientific operations are nominally conducted using an automatic
program called Observation Program (OP, hereafter). An OP consists of the software se-
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Fig. 10 Examples of TIR images are shown. Images of 373 K blackbody target using a collimator in front
of TIR were taken in a pre-flight laboratory test on 13 November 2013 with shutter-open image (A), shut-
ter-closed image (B), and the subtracted image (C). The deep sky images were taken on 27 February during
the in-flight TIR with shutter-open image (D), shutter-closed (E), and the subtracted image (F). The readout
values have large diverse biases pixel to pixel, but subtraction of the shutter-closed from the shutter-open
images results in low-noise thermal images. In image F, TIR imaged the deep sky with an edge effect, and
this is close to the background level of TIR

quences stored in DE, and 31 sequences can be stored at maximum. The sequences can be
replaced by uploading new ones from the ground station. We have constructed and tested 17
OPs for TIR on the ground (see Table 10). At launch, only part of this program is stored in
the DE because 31 OPs should be shared with all the instruments on Hayabusa2. The set of
OPs should be changed before a new operation phase starts.

TIR-0x01 is the setup sequence which is used every time TIR turns on. TIR-0x 02 con-
ducts onboard calibration and take 4 images, which was mainly used for the system tests.
This was also used for the first functionality test just after launch. TIR-0x 03 to 0x 05 are for
the function, performance, and health checks. TIR-06 to 08 take 128 summed images suit-
able for the observations at Home Position or during the cruise phase. TIR-0x09 to 0x0C
take 32 summed images and are more suitable for the observations at lower altitude from the
asteroid, since a 32-summed image takes 0.5 seconds per image, while it takes 2.1 seconds
for a 128-summed image. TIR-0x0B is the special OP to track the SCI (Small Carry-on
Impactor) continuously in a 2-second interval (30 images) after its separation. TIR-0x 0D,
shutter closed, is used for checking the shutter movement. TIR-OxOE- OF are 128- and
32-summed images for four thermal images, but 1 of them is a full image and 3 of them are
only the equatorial region to reduce the amount of data. TIR-0x 10 is the shutoff sequence of
TIR to be used via OP. TIR-0x 11 is the sequence of 4 times TIR-0x OE at a 512-second in-
terval to be used during the descent phase of the Hayabusa2 spacecraft. In Table 10, the TIR
OPs are shown with their functions, duration, designated partitions of DR, and the amount
of data production for each DR partition. The DR partition 69 is mainly used for subtracted
images, 6A is used for shutter-closed images, and 6F is for the mean of subtracted images
for quick downlink if required.
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Table 10 TIR operation program
# Name of Obs program  Function Duration [sec] DR Pt. Data [MB]
TIR-0x01  Setup and OFPN Peltier ON, 500 NA NA
loading Protect reset,
parameter settings,
OFPN data loading to
TIR
TIR-0x02  Cal-Check Auto CAL without 128 69 0.4
OFPN, 6A 0.8
M = 64 image x 4 set 6F 0.1
(€, S, A)
Image Compression
TIR-0x03  Checkl (Function M =64 image x 1 set 64 69 0.2
check) (C,S) 6A 0.4
Compressed
TIR-0x04  Check2 (Performance M =1,16,32,64, 360 69 2.0
check) 128 x 4 set (C, S, A) 6A 4.0
Image compression 6F 0.5
TIR-0x05  Check3 (Health check) M =1, 128 x 16 set 600 69 32
€. 8. A 6A 6.4
Image compression 6F 0.5
TIR-0x06  Takel (Nominal M =128/N =4 x 1 set 64 69 0.1
exposure) C,S) 6A 0.2
Image compression
TIR-0x07  Take2 (Long exposure) M =128 x 16 set 352 69 1.6
(C, S, A) 6A 32
Image compression 6F 0.1
TIR-0x08  Take3 (Short M =128 x 1 set (C, S) 32 69 0.1
exposure) Image compression 6A 0.2
TIR-0x09  Take6 (Moving object) M =32 x 16 set 288 69 1.6
(G, S, A) 6A 3.2
Image compression 6F 0.1
TIR-0x0A  TakeS (Moving object) M =32 x4set(C,S, A) 96 69 0.4
Image compression 6A 0.8
6F 0.1
TIR-0x0B  Take7 (SCI tracking) M =16, x1 (C), 384 69 3.0
30 (S), 1(C) 6A 0.4
Image compression
TIR-0x0C  Take4 (Close-up) M =32 x 1set(C,S) 32 69 0.1
Image compression 6A 0.2
TIR-0x0D  Shutter close Shutter close for safe 32 NA NA
TIR-O0X0E  Take8 (HP M =128 x4 et (C,S) 96 69 0.13
observations) 1 for full, 3 for eq. only 6A 0.8
Image compression
TIR-0xOF  Take9 (Low altitude) M =32 x 4 set(C, S) 96 69 0.13
1 for full, 3 for eq. only 6A 0.8
Image compression
TIR-0x10  Shut-off TIR Shutoft sequence 6 NA NA
TIR-0x11  OBS Sequence 4 x TIR-OXOE per 512s 1532 69 0.52
(Descent) Image compression 6A 32
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Fig. 11 The detection transparency of TIR is shown. (A) The combined transparency of 3 pieces of germa-
nium lens relative to the peak at 8.5 um is shown as the function of wavelength. (B) Transparency function
of the band-pass filter is shown for different angular conditions. The solid line shows the angle of incidence
(aoi) = 0° and half cone angle (HCA) = 7°, while the dashed line denotes the transparency for aoi = 16.4°
and HCA =21°

5 Performance of TIR

5.1 Wavelength Range

The TIR detection wavelength is determined by the combined transparency of 3 pieces of
germanium lens, the detector package, as well as that of the band-pass filter mounted in front
of the detector. Figure 11A shows the relative transparency of the germanium lens from 5 to
20 um with respect to transparency at 8.5 um. Relative transparency is higher than 80 % from
8 to 12 um, although there is a tendency towards lower transparency for longer wavelengths.
The commercial-based detector package is specifically designed for the 8—12 um band.

The transparency function of the band-pass filter is almost of rectangular shape, with
sharp cut-offs on either side of the 7.9—12.1 um band. In Fig. 11B, the solid line denotes the
transparency spectrum for angle of incidence (aoi) = 0° and half cone angle (HCA) = 7°,
while the dashed line shows the transparency spectrum for aoi = 16.4° and HCA = 21°.
Both profiles are almost the same, and the angular dependency is very small. This filter
pattern is also considered for one of the filters on MARA on MASCOT (Helbert et al. 2014;
Grott et al. 2016).

5.2 Fields of View and Image Distortion

Fields of view and image distortion of TIR are estimated using landscape images. In the atti-
tude control test room in the ISAS satellite center (Building-C), TIR observed the geometric
structures inside the room on 7 February 2014. One of the TIR images is shown in Fig. 12,
a non-summed image using the DE simulator device. In this case, the dimensions of the ge-
ometric structures are known. The distance between each vertical pole of the veranda, W, is
0.900 m, which corresponds to 48 & 1 pixels. Here we took the 4 W distance, corresponding
to 194 £ 1 pixels. The distance from the position of the lens of TIR to the structures was
measured with a portable laser range finder as 20.782 £ 0.001 m. The angular resolution of
TIR or IFOV is derived as 0.018557 £ 0.000096 m/pixel around the central area of a TIR
image, which corresponds to 0.891 £ 0.009 mrad/pixel or 0.051 &= 0.001° /pixel.

The image distortion of TIR is verified by checking the linearity of each linear structure
of geometric features and the parallelism between linear structures in this image. All the
handrails in the horizontal direction show a good linearity within 1 pixel uncertainty for a
length more than 250 pixels (examples are shown as the four dashed white lines in Fig. 12).
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Fig. 12 TIR image of geometric
structures in the test facility. The
dimensions of those structures

are known so that IFOV and FOV Width
is determined using the distance 0.900 [m]
from TIR measured with a laser 481 [pix]

range finder. The image distortion
is also verified as negligibly
small using the parallelism of
handrails (four dashed white
horizontal lines) at a variety of
positions in this image

Table 11 IFOV and FOV of TIR : :
IFOV 0.891 = 0.009 mrad/pixel or 0.051 = 0.001° /pixel

FOv 16.74 £0.17° x 12.66 £ 0.13°

The parallelism between handrails is also complete within 1 pixel uncertainty. The image
distortion is also checked by the negligible difference between the distances of each vertical
pole of the veranda. Thus we concluded that the image distortion is negligibly small. So the
total FOV can be geometrically calculated as 16.74 £ 0.17° for the horizontal 328 pixels
and 12.66 % 0.13° for the vertical 248 pixels, respectively. Those results are summarized in
Table 11.

The results of a more detailed geometrical calibration that was performed using the col-
limator set in the laboratory will be reported in future papers.

5.3 Temperature Detection Range

TIR’s temperature detection range has been tested and calibrated in the laboratory, during
system tests, and in space. Since the surface temperature of asteroid Ryugu is estimated to
typically range from 250 to 400 K during daytime and down to 150 K during nighttime, it is
difficult to calibrate the performance of radiation detectability of TIR using a single type of
apparatus. Thus TIR was tested and calibrated with multiple apparatuses and test situations
as shown in Table 12. The cross calibration between the apparatuses are needed and such
work is in progress now. Detailed descriptions on calibration tests and the apparatuses will
be reported in separate papers.

As for the cold target, the blackbody plate in the space chamber was selected because
it is in a similar temperature region used for Akatsuki (Planet-C) mission calibration so
that the same apparatus was used (Fukuhara et al. 2011). In this system, a blackbody target
plate with homogeneous temperature (within 0.3 K) is set in front of TIR-S and the entire
field of view is covered by the target plate. The plate is monitored within 0.1 K accuracy
at several points. This apparatus was originally built only for the cold temperature range,
but by introducing an additional cooling system for TIR-S with silicone oil, the applicable
temperature range was successfully extended to ambient temperature.

As a hot target, a commercial-based cavity blackbody was mainly used during the basic
performance check. Note that there is a degree of uncertainty in the monitored temperature
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Table 12 The apparatus and their temperature ranges

Test apparatus and test Temperature range Remarks

situation

Oil-bath blackbody 300 to 398 K Defocused, high stability, accuracy,
homogeneity

Cavity black body 300 to 423 K Defocused, easy to use, some uncertainty
inT

Collimator with blackbody 293 t0o 383 K Focused, High stability, geometrical

with peltier control calibration

Blackbody plate in space 233t0293 K Defocused, uneasy for T control

chamber

System thermal vacuum test 163to 178 K Defocused, rough temperature

(IR panel)

In-flight operation (during <160 K Deep sky survey

cruise)

and the temperature homogeneity in the cavity. Next, an oil-bath blackbody apparatus was
developed. The blackbody of this system shows a highly homogeneous temperature distri-
bution and the temperature is well monitored within 0.1 K uncertainty from ambient to hot
temperatures up to 423 K (150°C). However, as a result of the influence of thermal emis-
sion from the oil-bath, the maximum temperature was limited below 383 K (125°C) at that
time. The oil-bath blackbody apparatus was also used for the cross-calibration of TIR with
MARA on MASCOT. We also used the collimator system (IR System Co., METS L-10-2.9)
but only for a limited number of temperatures, although the accuracy and stability of the
blackbody temperature has been proven high enough. The collimator system was mainly
used for geometrical calibration using patterned targets due to the limited time available
until TIR delivery to the Hayabusa2 final test.

TIR’s calibration was originally planned for observations of the sunlit region of asteroid
Ryugu, but in order to confirm the noise level of the TIR-S, that is, the lowest tempera-
ture TIR can measure, we took some test situations to obtain data using lower temperature
targets. The first one was during the system thermal vacuum test, where TIR-S viewed the
black body IR panel about 1 m in front of TIR-S. The IR panel temperature was monitored
at many points with 0.5 K accuracy, and we estimated the temperature of the IR panel with
approximately 1 K uncertainty. The temperature ranged from 163 K to 178 K during the time
TIR was tested using the pre-loaded OFPN data. However, at that time it was still unclear
whether the lowest temperature measured at that time would be above the noise level.

After Hayabusa2 had been launched, TIR observed the deep sky, whose temperature
should be lower than the detection level, and we regarded the data as the TIR-S system
noise level. Indeed, we found that the values observed during deep sky observations were
significantly lower than those for the IR panel during the system thermal vacuum test. Now
we are able to conclude that the temperature at 160 K during the system vacuum test was
effectively detected, and that the detection range is more likely to extend down to 150 K.

Figure 13A shows the intensity for various temperatures taken by TIR. These values are
taken from the average of 50 x 50 pixels in the central region of 128 frame-summed TIR
images. As pointed out above, a single TIR image is 12-bit resolution but becomes 15-bit
data after summation in the pre-buffer in DE and bit-shifted for software data processing
in DE. In this graph the intensity is shown as 12-bit data, divided by 8, for comparison with
the non-summed single image data. We plot the deep sky at 100 K, as we do not know its
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Fig. 13 Temperature detected by TIR using multiple apparatuses and opportunities. TIR calibration was
conducted for Cold and Hot conditions using the apparatuses in the laboratory. Colder temperatures were
detected during the system TVT test and the deep sky observations in space (A). A best fit line for the
8-12 um range of blackbody radiation is shown along with the observed intensities which are biased by
421 DN so that the biased intensity is set to 1 at 100 K (B)

exact temperature which, nevertheless, can be expected to be lower than the IR panel in the
system TVT test.

In Fig. 13B, we replot all the data with 421 DN biased and also show the calculated
relative intensity of blackbody radiation (Planck Function) in 8-12 um wavelength range.
The biased intensity plots of TIR images and the calculated blackbody radiation fit well, at
least for the temperature range of 230 K or higher. This fact implies that the thermal infrared
detection of TIR is performed well and the system noise level is small (< a few DN) to fit
the well-calibrated range at 230 K or above.

The system noise level of TIR still remains somewhat uncertain, but examples of the
system noise level of 1 or 10 DN are shown in Fig. 14A and B, respectively, where the
vertical axes are logarithmic. Vertical error bars of £3 DN are shown in each plot because
this is the typical dispersion of a 128-summed image. Apparently the intensities observed
during the system TVT tests do not well fit with the blackbody radiation, but are consistent
within the error bar.

5.4 Temperature accuracy

The absolute temperature accuracy of commercial thermal infrared imagers is typically 2
or 3 K due to the frame-to-frame dispersion of the bias. This is also the case for TIR when
TIR takes a single image. The bias of all the pixels typically changes by several digits, cor-
responding to 3 K at maximum. We did not find a way to reduce this dispersion. Therefore
it is practical to take multiple images. The sum of 128 images has a smaller dispersive bias
offset than non-summed images. This is typically within &1 K for most of the temperature
detection range. It is more practical to take several summed images. For this purpose, we
prepare the OPs of TIR-0xOE and TIR-0x OF with a full image and three equatorial region
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Fig. 14 The data shown in Fig. 13 plotted on a logarithmic scale, along with the blackbody radiation at
8-12 um. The noise level is assumed for the case of A and B, respectively
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images of 128 and 32 summed images, respectively. The equatorial region image covers 16
instead of 256 vertical pixels only to check the dispersion of bias. The temperature depen-
dence of the absolute temperature is basically compensated using the shutter temperature as
reference and by monitoring the temperatures in TIR-S with 0.01 K accuracy.

In spite of the change of absolute temperature, the relative temperature in an image is not
influenced by the bias change. Here, we take the relative temperature as noise-equivalent
temperature difference (NETD) for the temperature dispersion at the same pixel in a time
series. In this case the NETD must be defined for each pixel. Figure 15 shows the averaged
values of NETD in the central region of TIR images as a function of target temperature.
The open square mark denotes the NETD at the average data points plotted in Fig. 14, and
the dashed line shows the calculated curves assuming that TIR values are proportional to
the detection range (8 to 12 um band pass) of blackbody radiation (Planck equation). This
result shows that the NETD is 0.3 or 0.4 K or less for >230 K, and the 1 — ¢ noise level
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Table 13 Outline of TIR operation in Hayabusa2 mission

Phase Operation contents

Launch Shutter-close to avoid direct sunshine

Initial operation Check the functionality and basic performance after launch

Transfer and Health and performance check by taking deep sky images

EDVEGA — A long-term trend of degradation and a dependency of temperature

Earth and Moon observations during Earth Swing-by
— Alignment and radiometric check using Earth and Moon

Approach Asteroid light-curve and radiometric measurements
— Direct comparison with ground based observations

Moon search, and observations of environmental dust clouds

Rendezvous HP (~20 km altitude): Global thermal imaging of asteroid
— Construct a global thermo-physical model (~20 m/pixel)

XO (~20 km, high phase angle): observations for polar and dawn-dusk regions
— Complete the global thermo-physical model addition to HP observations

MA (~5 km mid altitude): Global TPM with higher resolution mapping (3—5 m/pixel)
— Determine the TD site and geological context for the landed sites

LA (~1 km altitude): local site thermal imaging
— TD and landers site context (1 m/pixel)

Close-up (10-1000 m altitude): highest resolution images during the descent
Landers landing site search after deploy (0.1-1 km altitude)
SCI tracking (500 m altitude): consecutive imaging of SCI

SCI crater search and observation (1 km or lower): SCI impact points

is about 1 digit for summed images. In the lower temperature range, the NETD becomes
worse but remains within several K. A detailed calibration has been done, especially for the
cross calibration between the apparatuses, so that more precise NETD will be reported in a
separate paper both with regard to time series of each pixel and spatial region.

6 Observation Plan of TIR
6.1 Outline of TIR Operation Plan

The plan of TIR operations during the asteroid rendezvous phase is outlined in Table 13,
and the schematic diagram is shown in Fig. 16. In order to avoid direct irradiation of sun-
shine into the TIR detector, TIR closed the shutter by command just after the separation
of Hayabusa2 from the launch vehicle during the launch operation. During the initial func-
tion check on 11 December 2014, TIR checked its functionality using the quick check OP
(TIR-0x02), which was also used during the system environmental tests. For the perfor-
mance test on 17 December 2014, TIR checked its performance using the health check OP
(TIR-0x05) with the temperature conditions adjusted using the HCE parameter settings by
command. During the pre-flight test, we have learned that Shutter and Case temperatures
should be stable as much as possible and set higher than 299.5 K and 300.0 K, respectively.
To achieve this condition, the Lens temperature (Channel 60A) and the Panel temperature
(Channel 61A) both controlled by HCE should be adjusted at slightly higher setting points
than those for the preservation (300.5 K and 298.0 K, respectively). So far we find that
setting points that are 1.5 K higher for both channels show good results.
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Fig. 16 The schematic diagram

of the configuration of Earth Sun
Hayabusa?2 positions at the
asteroid rendezvous phase is
shown. Hayabusa2 will approach
the asteroid from the sunward
direction, mainly operated at the
Home Position. The spacecraft Approach

will descend to the lower altitude
Home Posit n*\Hiih Phase Angle

for mission purposes

Ryugu

The health check will be continued once every month, and at the beginning of each
operation phase. The observation plan will be presented in Sects. 6.2 to 6.7.

6.2 Observation During Cruise and Earth Swing-By

TIR will observe the deep sky once every month to conduct its health check using the health
check OP (TIR-0x05), to adjust the temperature conditions by HCE parameter settings, and
to trace the possible degradation of the detector during the 3.5-year long cruise phase. The
deep sky is considered a good target since it can be used as a kind of flat field cold target to
estimate the noise level and check anisotropic response.

Just before and after the Earth swing-by, TIR is planned to image the Earth and the
Moon using the health check OP (TIR-0x05). One of the objectives is an alignment check
with ONC and the attitude control of the Hayabusa2 spacecraft. When TIR observes the
Earth and the Moon in an image concurrently with a wide angle camera (ONC-W1) or a
telescopic camera (ONC-T), which is possible 30 to 10 days before the Earth swing-by, the
alignment (—Z direction and roll angle of Hayabusa2 spacecraft) can be checked within a
pixel accuracy. The other objectives of the observation are to measure the thermal radiation
from the Earth or the Moon, since they are the only targets with known temperatures during
the mission. Just after the Earth swing-by, TIR will observe the Earth and the Moon at
closer distance using the health check OP (TIR-0x05) or low-altitude OPs (TIR-0x0A and
TIR-0x0C).

6.3 Observation whilst Approaching the Asteroid (AP)

TIR will measure thermal infrared intensity and light-curves during the spacecraft’s ap-
proach towards asteroid Ryugu and compare them with the results from ground-based obser-
vations. The asteroid is about the size of 1 pixel or less at a distance of 2000 km to 1000 km
from the asteroid. We plan to take more than 20 images using the HP OP (TIR-0x OE) dur-
ing an asteroid rotation of 7.63 hours. After this phase, the asteroid becomes larger than 1
pixel so that we start observations not only for thermal emission but also for constructing
shape models. At a distance of 100 km or closer to the asteroid, TIR will also observe the
surrounding dust clouds and orbiting moons using the HP OP (TIR-0x OE) or long exposure
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moving object OP (TIR-0x09). In case they are made of carbonaceous chondrite material,
any moons are expected to be detected if larger than 1/5 pixel in size. For example, this
translates to 20 m object size for 100 km distance.

6.4 Observations at Home Position (HP) and at Large Phase Angles (XO)

After the arrival of the Home Position, about 20 km earthward from the asteroid, TIR will
observe the asteroid once a week, by taking images using the HP OP (TIR-0xOE) every 512
seconds during an asteroid rotation of 7.63 hours. More than 50 images are taken during one
asteroid rotation. This is to be used to construct a thermal model with an improved thermal
inertia compared to the one derived from a single thermal image. The thermal model of the
whole asteroid will be constructed as the final product in this phase, with a spatial resolu-
tion of typically 17 m per pixel. A preliminary asteroid thermal model will be constructed
sooner, probably in a week, for operational use. This model will be used to avoid hazardous
operations by estimating the surface thermal environment during descent operations of the
spacecraft, as well as assessing the distribution of boulders at the candidate sites on the
asteroid.

A detailed asteroid thermal model constructed for scientific use will be available in a
month, but updated according to updates of the asteroid shape model and the position and
attitude of spacecraft. Due to the change of distance from the sun from 0.96 to 1.42 AU,
the long-term trend of temperature change will be obtained and the thermal inertia resulting
from thicker skin depths will be investigated. This model will be used for dedicated scientific
studies and to constrain the surface particle size or possible existence of organics to select
the landing sites of the mission.

Observations from large phase angles will also be planned. This phase is needed to map
the entire surface completely and to obtain observations at different, higher phase angles.
In particular for TIR, not only the polar region but the dawn and dusk regions could be
easily observed. Since temperatures at the dawn and dusk regions are sensitive to the surface
thermal inertia, as shown in Fig. 1, these observations are important to investigate thermal
inertia.

6.5 Lower Altitude Observations (MA, LA)

Before the descent operations for sample collection or deployment of landing robots, the
spacecraft will descend to a lower altitude and observe the candidate sites in more detail
to confirm whether the sites are suitable with regard to scientific and mission requirements.
One or two asteroid rotations (7.63 and 15.26 hours) before arrival at target altitude, TIR
will image the surface using the descent OP (TIR-0x 11). At 5 km altitude (MA), TIR will
take images using the moving object OP (TIR-0x0C) every 512 or 256 seconds and map
the hemisphere including the candidate sites with 4.3 m spatial resolution. These images
are used to confirm the thermal model constructed beforehand, and also to construct a more
detailed thermal model.

At 1 km altitude (LA), TIR will take images of specific sites at 85 cm per pixel and
280 x 210 m area, probably in an hour, using the moving object OP (TIR-0x0C). Geologic
features are imaged at proper intervals and investigated for their thermo-physical properties.

6.6 Descent, Close-Up, and Touchdown Observations (CU, TD)

For sample collection, or deployment of landing robots, as well as their rehearsals, the space-
craft will descend to a lower altitude. Again, 1 or 2 asteroid rotations (7.63 and 15.26 hours)
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before the arrival at the target sites, TIR will image the surface using the descent OP
(TIR-0x 11). At a lower altitude between 1 km and 50 m, TIR will also observe the sur-
face of the asteroid at a higher spatial resolution using the moving object OP (TIR-0x0C)
every 256 second nominally.

For the final descent from 50 m to 5 m altitude, TIR will image the surface using the
moving object OP (TIR-0x0C) more frequently, namely every 60 seconds. The final spa-
tial resolution is an order of centimeters. TIR will stop its observations using the shutoff
OP (TIR-0x10) at 5 m altitude just before the start of the free fall of the spacecraft for
touchdown.

For the deployment of landing robots such as MINERVA-II and MASCOT, the altitude
of deployment will be about 60 m. TIR will image the landing sites using the moving object
OP (TIR-0x0C). After deployment, the spacecraft will ascend to 3 km altitude and hover
at altitude for 24 hours, then ascend to HP. TIR will observe the asteroid surface using the
moving object OP (TIR-0x0C) every 512 seconds nominally.

6.7 SCI Separation and SCI Search

For the SCI separation, the spacecraft will descend to 500 m altitude, deploy SCI, and escape
from there to the safe area behind the asteroid. Again, 1 or 2 asteroid rotations (7.63 and
15.26 hours) before the arrival of target sites, TIR will image the surface using the descent
OP (TIR-0x11). At the altitude of 1 km to 500 m, TIR will image the surface using the
moving object OP (TIR-0x0C). Just after separation of SCI, TIR will take images of SCI
using the SCI tracking OP (TIR-0x0B), 30 images for each 2-second interval. After escape
from there and behind the asteroid, TIR will observe the dust stream originating from the
surface of asteroid excavated by the SCI impact, using the long exposure moving object OP
(TIR-0x09).

7 Summary

TIR is the thermal infrared imager on Hayabusa2 designed to map the thermo-physical prop-
erties of C-type near-Earth asteroid 162173 Ryugu. We have demonstrated the scientific im-
portance of thermal infrared imaging and presented the scientific and mission objectives.
The specifications of TIR have been described, showing that TIR has a relatively wide field
of view of 16 x 12° to image the thermal emission from the asteroid and also covers a wide
temperature range of 150 K to 460 K with 230420 K as the well-calibrated range. The
performance meets scientific and system requirements. Detailed instrumentation and data
processing flows have been shown. A detailed operation plan was also given for launch,
cruise, home position and low-altitude operations. The thermal model obtained from TIR
data will contribute to understanding the nature of the target asteroid and will also be valu-
able for sampling site selection and landing safely.
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